全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自适应全局局部集成判别分析

DOI: 10.13232/j.cnki.jnju.2014.04.016

Keywords: 人脸识别,维数约简,全局结构,局部结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

?将数据集进行合理的维数约简,对于提高一些机器学习算法的效率起着至关重要的影响。本文提出了一种自适应全局―局部集成判别分析算法(adaptiveintegratedglobalandlocaldiscriminantanalysis,aigld)。ailgd利用数据集的全局判别结构和局部判别结构,将线性判别算法(lineardiscriminantanalysis,lda)与提出的局部判别算法自适应的相结合。在uci数据库及标准人脸数据库上的识别实验证明,相比于现有算法,aigld具有更高的识别准确率及更强的鲁棒性。

References

[1]  1.weil,xuf.localccaalignmentanditsapplication.neurocomputing,2012,89(15):78~88.
[2]  3.belhumeurp,hespanhaj,kriegmand.eigenfacesvs.fisherfaces:recognitionusingclassspecificlinearprojection.ieeetransactionsonpatternanalysisandmachineintelligence,1997:19(7):711~720.
[3]  4.zhixb,fanjl,zhaof.fuzzylinearsiscriminantanalysis-guidedmaximumentropyfuzzyclusteringalgorithm.patternrecognition,2013,46(6):1604~1615.
[4]  5.hex,yans,huy,etal.facerecognitionusinglaplacianfaces.ieeetransactionsonpatternanalysisandmachineintelligence,2005,27:328~340.
[5]  16.yangj,zhangl,yangj,etal.fromclassifierstodiscriminators:anearestneighborruleinduceddiscriminantanalysis.patternrecognition,2011,44(7):1387~1402.
[6]  17.pangyh,andrewbjt,abasfs.regularizedlocalitypreservingdiscriminantembeddingforfacerecognition.neurocomputing,2012,77(1):156~166.
[7]  18.luj,tanyp.regularizedlocalitypreservingprojectionsanditsextensionsforfacerecognition.ieeetransactionsonsystems,manandcybernetics,partb,2012,40(3):958~963.
[8]  20.dudar,hartp,storkd.patternclassification.the2ndedition.hoboken,nj:wiley,2000,96~97
[9]  2.ehsanzb,massimop,richardydx.adiscriminativeprototypeselectionmethodsforgraphembed-ding.patternrecognition,2013,46(6):1648~1657.
[10]  6.yans,xud,zhangb,etal.graphembeddingandextensions:ageneralframeworkfordimensionalityreduction.ieeetransactiononpatternanalysisandmachineintelligence,2007,29(1):40~51.
[11]  7.魏莱,王守觉,徐菲菲等.近邻边界fisher判别分析.电子与信息学报,2009,31(3):509~513.
[12]  8.ucimachinelearningrepository.http://archive.ics.uci.edu/ml/,2007-01-01
[13]  9.reny.localandglobalstructurepreservingbasedfeatureselection.neurocomputing,2012,89:147~157.
[14]  10.pengx,xud.alocalinformation-basedfeature-selectionalgorithmfordataregression.patternrecognition,2013.46(9):2519~2530.
[15]  11.muy,dingw,taod.localdiscriminativedistancemetricsensemblelearning.patternrecognition,2013,46(8):2337~2349.
[16]  12.caid,hex,hanj.semi-superviseddiscriminantanalysis.in:proceedingsofieeeinternationalconferenceoncomputervision(iccv),riodejaneiro,brazil,2007:1~7
[17]  13.leiz,zhangz,lisz.featurespacelocalityconstraintforkernelbasednonlineardiscriminantanalysis.patternrecognition,2012,45(7):2733~2742.
[18]  14.wangf,dingc,lit.integratedkl(k-means-laplacian)clustering:anewclusteringapproachbycombiningattributedataandpairwiserelations.siam:siaminternationalconferenceondatamining,reno-sparks-tahoearea,nevada,usa,2009,14~21.
[19]  15.wangh,huangh,dingc.discriminantlaplacianembedding.in:proceedingsofthe24thaaaiconferenceonartificialintelligence,atlanta,georgia,usa,2010:167~174
[20]  19.friedmanjh.regularizeddiscriminantanalysis.journaloftheamericanstatisticalassociation,1998,84(405):165~175.
[21]  21.orl人脸数据库.http://www.uk.research.att.com/facedatabase.html,2002-01-01
[22]  22.cmupie人脸数据库.http://cvc.yale.edu/projects/yalefaces/yalefaces.html,2012-02-27

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133