全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

渗透系数空间变异程度对进化算法优化结果影响评价

DOI: 10.13232/j.cnki.jnju.2015.01.010, PP. 60-66

Keywords: 渗透系数,进化算法,噪声遗传算法,地下水污染

Full-Text   Cite this paper   Add to My Lib

Abstract:

噪声遗传算法(noisygeneticalgorithm,nga)是近年来引入到地下水领域处理参数空间变异性的新方法。本文针对渗透系数空间变异程度对基于nga策略的进化算法求解效果影响展开研究,探索nga策略适用范围。研究结果表明:当渗透系数对数方差()小于1.0时,采用nga取样策略,提高算法计算效率的同时不会影响优化结果可靠性;当增加到2.0甚至3.0,5.0时,算法优化结果不再具有高可靠性。通过增加nga最大取样数可以提高算法求解精度,有效降低优化结果的不确定性。但随着最大取样数的增加,优化结果精度和可靠性将不再有明显提高。此时需寻求其他方法,如增加资金投入,获取渗透系数条件点,降低渗透系数场不确定性,从而获得更加准确可靠的优化方案。

References

[1]  ahmeds,marsilygd.comparisonofgeostatisticalmethodsforestimatingtransmissivityusingdataintransmissivityandspecificcapacity.waterresourcesresearch,1987,23(9):1717~1737.
[2]  millerbl.noise,sampling,andefficientgeneticalgorithms.phd.dissertation.urbana-champaign:universityofillinois,1997.
[3]  gopalakrishnang,minskerbs,goldbergde.optimalsamplinginanoisygeneticalgorithmforrisk-basedremediationdesign.journalofhydroinformatics,2003,128,11~25.
[4]  koltermannce,gorelicksm.heterogeneityinsedimentarydeposits:areviewofstructureimitating,processimitating,anddescriptiveapproaches.waterresourcesresearch,1996,32(9):2617~2658.
[5]  吴吉春,陆乐.地下水模拟不确定性分析.南京大学学报(自然科学),2011,47(3):227~233.
[6]  陆乐,吴吉春.地下水数值模拟不确定性的贝叶斯分析.水利学报,2010,41(3):264~271.
[7]  wujf,zhengcm,chiencc.cost-effectivesamplingnetworkdesignforcontaminantplumemonitoringundergeneralhydrogeologicalconditions.contaminanthydrology,2005,77:41~65.
[8]  wujf,zhengcm,chiencc,etal.acomparativestudyofmontecarlosimplegeneticalgorithmandnoisygeneticalgorithmforcost-effectivesamplingnetworkdesignunderuncertainty.advancesinwaterresource,2006,29:899~911.
[9]  骆乾坤,吴剑锋,林锦等.地下水污染监测网多目标优化设计模型及进化求解.水文地质工程地质,2013,40(5):97~103.
[10]  singha,minskerbs.uncertainty-basedmulti-objectiveoptimizationofgroundwaterremediationdesign.waterresourcesresearch,2008,44:2404~2424.
[11]  杨蕴,吴剑锋,于军,等.基于参数不确定性的地下水污染治理多目标管理模型.环境科学学报,2013,33(7):2059~2067.
[12]  彭伟,吴剑锋,吴吉春.npga-gw在地下水系统多目标优化管理中的应用.高校地质学报,2008,14(4):631~636.
[13]  luoqk,wujf,sunxm,etal.optimaldesignofgroundwaterremediationsystemusingamulti-objectivefastharmonysearchalgorithm.hydrogeologyjournal,2012,20(8),1497~1510.
[14]  meyerpd,eheartjw,ranjithans,etal.designofgroundwatermonitoringnetworksforlandfills.in:kundzewiczzwedsproceedingsoftheinternationalworkshoponnewuncertaintyconceptsinhydrologyandwaterresources.cambridgeuniversitypress,1995,190~196.
[15]  阎婷婷,吴剑锋.渗透系数的空间变异性对污染物运移的影响研究.水科学进展,2006,17(1):29~36.
[16]  陈彦,吴吉春.含水层渗透系数空间变异性对地下水数值模拟的影响.水科学进展,2005,16(4):482~487.
[17]  hassanae,cushmanjh,delleurjw.amontecarloassessmentflowandtransportperturbationmodels.waterresourcesresearch,1998,34(5):1143~1163.
[18]  smalleyjb,minskerb,goldbergde.risk-basedinsitu-bioremediationdesignusinganoisygeneticalgorithm.waterresourcesresearch,2000,36(10):3043~3052.
[19]  freezera.astochasticconceptualanalysisofone-dimensionalgroundwaterflowinnon-uniformhomogeneousmedia.waterresourcesresearch,1975,11(5):725~741.
[20]  gelharlw.stochasticsubsurfacehydrologyfromtheorytoapplications.waterresourcesresearch,1986,22(9):135s~145s.
[21]  robinml,gutjahral,sudickyea,etal.crosscorrelatedrandomfieldgenerationwiththedirectfouriertransformmethod.waterresourcesresearch,1993,29(7):2385~2397.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133