全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于光线变化的显著性区域提取

DOI: 10.13232/j.cnki.jnju.2015.01.018, PP. 125-131

Keywords: 显著性区域,光线特征,流行排序,融合

Full-Text   Cite this paper   Add to My Lib

Abstract:

图像的显著区域提取是指利用人的视觉特点和习惯,获取图像中最易引起注意的区域。该技术被广泛应用于视觉分析的各个领域,是近几年研究的热点。当前显著性区域提取的方法大多基于颜色对比的基础上进行检测,这种方法只是大概检测出显著性区域的范围,不够精细。在对图像进行显著性区域提取的时候,光线也应该占有很重要的地位。为了更好的提取图像的显著性区域,本文提出一个融合光线的特征的模型进行显著性区域的提取。首先对每幅图像进行光线衰竭和增强的变化,生成不同光线特征的图像;然后对每幅不同光线条件下的图像利用流行排序计算显著性区域;最后针对多个显著性区域的结果进行融合计算,得到图像的显著性区域结果。该算法在公开图像数据库进行的试验验证标明,其结果优于同类的算法。?

References

[1]  houx,zhangl.saliencydetection:aspectralresidualapproach.in:proceedingsoftheinternationalconferenceoncomputervisionandpatternrecognition,cvpr’07,2007:1~8.
[2]  chengm.globalcontrastbasedsalientregiondetection.in:proceedingsoftheieeeinternationalconferenceoncomputervisionandpatternrecognition,2011:409~416.
[3]  martind,fowlkesc,tald,etal.adatabaseofhumansegmentednaturalimagesanditsapplicationtoevaluatingsegmentationalgorithmsandmeasuringecologicalstatistics.in:proceedingsoftheinternationalconferenceoncomputervision(iccv),2001(2):416~423.
[4]  perazzif,krahenbuhlp,pritchy,etal.saliencyfilters:contrastbasedfilteringforsalientregiondetection.in:proceedingsoftheinternationalconferenceoncomputervisionandpatternrecognition,2012:733~740.
[5]  achantar,hemamis,estradaf,etal.frequency-tunedsalientregiondetection.in:proceedingsfotheinternationalconferenceoncomputervisionandpatternrecognition,2009:1597~1604.
[6]  margolinr,tala,zelnik-manorl.whatmakesapatchdistinct?in:proceedingsoftheieeeconferenceoncomputervisionandpatternrecognition,cvpr,2013:1139~1146.
[7]  刘雨青,黄添强.基于时空域能量可疑度的视频篡改检测与篡改区域定位.南京大学学报(自然科学),2014,50(1):61~71.
[8]  chenlq,xiex,fanx.avisualattentionmodelforadaptingimagesonsmalldisplays.multimediasystems,2003,9(4):353~364.
[9]  高玉祥,张兴敢,柏业超.基于keystone变换的高速运动目标检测方法研究.南京大学学报(自然科学),2014,50(1):30~34.
[10]  ittil.modelsofbottom-upandtop-downvisualattention.phddissertation.californiainstituteoftechnologypasadena,2000.
[11]  mayf,zhangh.contrast-basedimageattentionanalysisbyusingfuzzygrowing.acmmultimedia,2003:374~381.
[12]  harelj,kochc,peronap.graph-basedvisualsaliency.advancesinneuralinformationprocessingsystems,2007:545~555.
[13]  gofermans,zelnikmanorl,tala.context-awaresaliencydetection.ieeetransactionsonpatternanalysisandmachineintelligence,2012,34(10):1915~1926.
[14]  yangc,zhangl,luh,etal.saliencydetectionviagraph-basedmanifoldranking.in:proceedingsoftheieeeinternationalconferenceoncomputervisionandpatternrecognition,2013:3166~3173.
[15]  borjia.,sihitedn,ittil.salientobjectdetection:abench-mark.in:proceedingsofeuropeanconferenceoncomputervision,2012:414~429.
[16]  weiy,wenf,zhuw,etal.geodesicsaliencyusingbackgroundpriors.in:proceedingsofeuropeanconferenceoncomputervision,2012:29~42.
[17]  gofermans,zelnikmanorl,tala.context-awaresaliencydetection.ieeetransactionsonpatternanalysisandmachineintelligence,2012,34(10):1915~1926.
[18]  chengmm,zhanggx,mitranj,etal.globalcontrastbasedsalientregiondetection.in:proceedingsoftheinternationalconferenceoncomputervisionandpatternrecognition,2011:409~416.
[19]  yangc,zhangl,luh,etal.saliencydetectionviagraph-basedmanifoldranking.in:proceedingsoftheinternationalconferenceoncomputervisionandpatternrecognition,2013.
[20]  shenx,wuy.aunifiedapproachtosalientobjectdetectionvialowrankmatrixrecovery.in:proceedingsoftheinternationalconferenceoncomputervisionandpatternrecognition,2012:853~860.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133