全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

张量树学习算法

DOI: 10.13232/j.cnki.jnju.2015.02.026, PP. 390-404

Keywords: 量树学习算法,张量树,张量学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于张量几何理论及人类视觉认知的一、二、三维认知模式,本文提出了张量树学习算法(tensortreelearning,ttl)。其内容包括:张量树学习的基本概念、张量树学习算法、基于张量树的tucker分解和cp分解的学习算法等;同时也给出了阶张量树树高的最小高度为;最后在数据库coil100,coil20和本实验室创建的数据库上进行了验证,结果表明张量树学习算法是有效、合理的。

References

[1]  李凡长,张莉,杨季文,等.李群机器学习.合肥:中国科学技术大学出版社,2013.
[2]  taodc,lixl,huwm,etal.supervisedtensorlearning.knowl.inf.syst,2007,13:1~42.
[3]  duangf,wanghc,liuzy,etal.k-cpd:learningofovercompletedictionariesfortensorsparsecoding.in:patternrecognition(icpr),201221stinternationalconferenceon,2012:493~496.
[4]  kungsy.fromgreencomputingtobig-datalearning:akernellearningperspective.in:application-specificsystems,architecturesandprocessors(asap),2013ieee24thinternationalconferenceon,2013:1~1.
[5]  haozf,helf,chenbq,etal.alinearsupporthigher-ordertensormachineforclassification.ieeetransactionsonimageprocessing,2013,22:2911~2920.
[6]  tuckerlr.implicationsoffactoranalysisofthree-waymatricesformeasurementofchange.problemsinmeasuringchange,1963:122~137.
[7]  kroonenbergpm,delj.principalcomponentanalysisofthree-modedatabymeansofalternatingleastsquaresalgorithms.psychometrika,1980,45(1):69~97.
[8]  tuckerlr.somemathematicalnotesonthree-modefactoranalysis.psychometrika,1966,31(3):279~311.
[9]  kroonebergpm.three-modeprincipalcomponentanalysis:theoryandapplications.dswopress:leiden,1983,2.
[10]  dell,demb,vandewallej.amultilinearsingularvaluedecomposition.siamjournalonmatrixanalysisandapplications,2000,21(4):1253~1278.
[11]  sunjt,zenghj,liuh,etal.cubesvd:anovelapproachtopersonalizedwebsearch.in:proceedingsofthe14thinternationalconferenceonworldwideweb,2005:382~390.
[12]  harshmanra.foundationsoftheparafacprocedure:modelsandconditionsforan"explanatory"multimodalfactoranalysis.uclaworkingpapersinphonetics,1970,16:1~84.
[13]  harshmanra.parafac2:mathematicalandtechnicalnotes.uclaworkingpapersinphonetics,1972,22:30~44.
[14]  tenb,josm.simplicityandtypicalrankresultsforthree-wayarrays.psychometrika,2011,76(1):3~12.
[15]  bror,dejs.afastnon-negativity-constrainedleastsquaresalgorithm.journalofchemometrics,1997,11(5):393~401.
[16]  kongh,teohek,wangjg,etal.twodimensionalfisherdiscriminantanalysis:forgetaboutsmallsamplesizeproblem.in:proc.ieeeintern.conf.onacoustics,speech,andsignalprocessing,2005:761~764.
[17]  yansc,xud,yangq,etal.multilineardiscriminantanalysisforfacerecognition.imageprocessing,ieeetransactionson,2007,16(1):212~220.
[18]  taodc,lixl,wuxd,etal.generaltensordiscriminantanalysisandgaborfeaturesforgaitrecognition.patternanalysisandmachineintelligence,ieeetransactionson,2007,29(10):1700~1715.
[19]  jinqy,huangyz,wangcf.modulardiscriminantanalysisanditsapplications.artificialintelligencereview,2013,39(4):285~303.
[20]  kotsiai,patrasi.multiplicativeupdaterulesformultilinearsupporttensormachines.in:patternrecognition(icpr),201020thinternationalconferenceon,2010:33~36.
[21]  kotsiai,guoww,patrasi.higherranksupporttensormachinesforvisualrecognition.patternrecognition,2012,45(12):4192~4203.
[22]  yangxw,chenbq,chenj.atensorfactorizationbasedleastsquaressupporttensormachineforclassification.inadvancesinneuralnetworks?isnn2013.springer:2013,437~446.
[23]  曾奎,何丽芳,杨晓伟.基于多线性主成分分析的支持高阶张量机.南京大学学报(自然科学),2014,50(2):219-227.
[24]  hutchinsonbrian,dengli,yudong.tensordeepstackingnetworks.patternanalysisandmachineintelligence,ieeetransactionson,2012,35(8):1944~1957.
[25]  guoww,kotsiai,patrasi.tensorlearningforregression.imageprocessing,ieeetransactionson,2012,21(2):816~827.
[26]  bromuris.atensorfactorizationapproachtogeneralizationinmulti-agentreinforcementlearning.in:proceedingsofthe2012ieee/wic/acminternationaljointconferencesonwebintelligenceandintelligentagenttechnology,2012:274~281.
[27]  shizq,hanjq,zhengtr,etal.audiosegmentclassificationusingonlinelearningbasedtensorrepresentationfeaturediscrimination.2013,21(1):186~196.
[28]  zubairs,wangww.tensordictionarylearningwithsparsetuckerdecomposition.in:digitalsignalprocessing(dsp),301318thinternationalconferenceon,2013:1~6.
[29]  dell,demb,vandewallej.onthebestrank-1andrank-(r1,r2,...,rn)approximationofhigher-ordertensors.siamjournalonmatrixanalysisandapplications,2000,21(4):1324~1342.
[30]  cichockia,zdunekr,amaris.hierarchicalalsalgorithmsfornonnegativematrixand3dtensorfactorization.in:7thinternationalconference,ica2007.berlin:springer,2007,169~176.
[31]  yejieping.generalizedlowrankapproximationsofmatrices.machinelearning,2005,61(1~3):167~191.
[32]  hexf,caid,niyogipartha.tensorsubspaceanalysis.in:nips,2005:1.
[33]  carrolljd,changjj.analysisofindividualdifferencesinmultidimensionalscalingviaann-waygeneralizationof“eckart-young”decomposition.psychometrika,1970,35(3):283~319.
[34]  koldatg,baderbw.thetophitsmodelforhigher-orderweblinkanalysis.in:workshoponlinkanalysis,counterterrorismandsecurity,2006:26~29.
[35]  baderbw,berrymw,brownemurray.discussiontrackinginenronemailusingparafac.insurveyoftextminingii.london:springer,2008,147~163.
[36]  friedlandermp,hatzk.computingnon-negativetensorfactorizations.optimisationmethodsandsoftware,2008,23(4):631~647.
[37]  paaterop.aweightednon-negativeleastsquaresalgorithmforthree-way‘parafac’factoranalysis.chemometricsandintelligentlaboratorysystems,1997,38(2):223~242.
[38]  hazant,polaks,shashuaa.sparseimagecodingusinga3dnon-negativetensorfactorization.in:computervision,2005,tenthieeeinternationalconferenceon,2005:50~57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133