A primary focus of longevity research is to identify prognostic risk factors that can be mediated by early treatment efforts. To date, much of this work has focused on understanding the biological processes that may contribute to aging process and age-related disease conditions. Although such processes are undoubtedly important, no current biological intervention aimed at increasing health and lifespan exists. Interestingly, a close relationship between mobility performance and the aging process has been documented in older adults. For example, recent studies have identified functional status, as assessed by walking speed, as a strong predictor of major health outcomes, including mortality, in older adults. This paper aims to describe the relationship between the comorbidities related to decreased health and lifespan and mobility function in obese, older adults. Concurrently, lifestyle interventions, including diet and exercise, are described as a means to improve mobility function and thereby limit the functional limitations associated with increased mortality. 1. Introduction The term longevity can be used to refer to a “long life” for an individual or more broadly to life expectancy within a population. In recent years, scientists have devoted much attention to finding ways to increase longevity. To date, much of this work has focused on understanding the biological processes that may contribute to aging and age-related disease conditions. A number of potential biological targets have been identified during the past few decades, and a wide range of intervention approaches are currently being developed. The types of interventions considered to have the potential to affect the aging process include biochemical and genetic techniques, hormonal treatments, and behavioral approaches to reduce age-related comorbidities and thereby increase mean lifespan. Although biological approaches may have significant potential in the future, the effects of behavioral interventions on age-related conditions can be more immediately evaluated and put into practice at the present time. To determine the effectiveness of behavioral interventions and other treatment approaches to increase longevity, a benchmark is needed that enables scientists to determine whether or not the intervention was successful. Because it is unrealistic to conduct lifespan studies in humans, a surrogate endpoint is needed to estimate the effect interventions could have on longevity. Recently, gait (i.e., walking) speed—a simple, valid, and reliable clinical test—was considered to be such an
References
[1]
S. Studenski, S. Perera, K. Patel et al., “Gait speed and survival in older adults,” Journal of the American Medical Association, vol. 305, no. 1, pp. 50–58, 2011.
[2]
M. Cesari, S. B. Kritchevsky, A. B. Newman et al., “Added value of physical performance measures in predicting adverse health-related events: results from the health, aging and body composition study,” Journal of the American Geriatrics Society, vol. 57, no. 2, pp. 251–259, 2009.
[3]
J. Dumurgier, A. Elbaz, P. Ducimetiere, et al., “Slow walking speed and cardiovascular death in well functioning older adults: prospective cohort study,” British Medical Journal, vol. 339, pp. 1–7, 2009.
[4]
J. M. Guralnik, L. Ferrucci, E. M. Simonsick, M. E. Salive, and R. B. Wallace, “Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability,” The New England Journal of Medicine, vol. 332, no. 9, pp. 556–561, 1995.
[5]
M. Cesari, “Role of gait speed in the assessment of older patients,” Journal of the American Medical Association, vol. 305, no. 1, pp. 93–94, 2011.
[6]
K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among US adults, 1999–2008,” Journal of the American Medical Association, vol. 303, no. 3, pp. 235–241, 2010.
[7]
S. D. R. Harridge and A. Young, “Skeletal muscle,” in Principles and Practices of Geriatric Medicine, pp. 898–905, Wiley, London, UK, 1998.
[8]
R. N. Baumgartner, P. M. Stauber, D. McHugh, K. M. Koehler, and P. J. Garry, “Cross-sectional age differences in body composition in persons 60+ years of age,” Journals of Gerontology Series A, vol. 50, no. 6, pp. M307–M316, 1995.
[9]
G. B. Forbes, “Longitudinal changes in adult fat-free mass: influence of body weight,” American Journal of Clinical Nutrition, vol. 70, no. 6, pp. 1025–1031, 1999.
[10]
R. Roubenoff, “Sarcopenic obesity: the confluence of two epidemics,” Obesity Research, vol. 12, no. 6, pp. 887–888, 2004.
[11]
T. W. Buford, S. D. Anton, A. R. Judge et al., “Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy,” Ageing Research Reviews, vol. 9, no. 4, pp. 369–383, 2010.
[12]
W. J. Evans, “Skeletal muscle loss: cachexia, sarcopenia, and inactivity,” American Journal of Clinical Nutrition, vol. 91, no. 4, 2010.
[13]
R. N. Baumgartner, “Body composition in healthy aging,” Annals of the New York Academy of Sciences, vol. 904, pp. 437–448, 2000.
[14]
C. S. Blaum, Q. L. Xue, E. Michelon, R. D. Semba, and L. P. Fried, “The association between obesity and the frailty syndrome in older women: the Women's Health and Aging Studies,” Journal of the American Geriatrics Society, vol. 53, no. 6, pp. 927–934, 2005.
[15]
M. Cesari, S. B. Kritchevsky, R. N. Baumgartner et al., “Sarcopenia, obesity, and inflammation–results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study,” American Journal of Clinical Nutrition, vol. 82, no. 2, pp. 428–434, 2005.
[16]
E. A. Finkelstein, C. J. Ruhm, and K. M. Kosa, “Economic causes and consequences of obesity,” Annual Review of Public Health, vol. 26, pp. 239–257, 2005.
[17]
J. R. Pleis, J. S. Schiller, and V. Benson, “Summary health statistics for U.S. adults: National Health Interview Survey, 2000,” Vital and Health Statistics Series 10, no. 215, pp. 1–132, 2003.
[18]
J. P. Chaput and A. Tremblay, “Obesity and physical inactivity: the relevance of reconsidering the notion of sedentariness,” Obesity Facts, vol. 2, no. 4, pp. 249–254, 2009.
[19]
S. A. Carlson, J. E. Fulton, D. A. Galuska, J. Kruger, F. Lobelo, and F. V. Loustalot, “Prevalence of self-reported physically active adults—United States, 2007,” Morbidity and Mortality Weekly Report, vol. 57, no. 48, pp. 1297–1300, 2008.
[20]
S. U. Ko, S. Stenholm, and L. Ferrucci, “Characteristic gait patterns in older adults with obesity—results from the Baltimore Longitudinal Study of Aging,” Journal of Biomechanics, vol. 43, no. 6, pp. 1104–1110, 2010.
[21]
S. P. Messier, R. F. Loeser, G. D. Miller et al., “Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the arthritis, diet, and activity promotion trial,” Arthritis and Rheumatism, vol. 50, no. 5, pp. 1501–1510, 2004.
[22]
I. Janssen, S. B. Heymsfield, and R. Ross, “Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability,” Journal of the American Geriatrics Society, vol. 50, no. 5, pp. 889–896, 2002.
[23]
M. Estrada, A. Kleppinger, J. O. Judge, S. J. Walsh, and G. A. Kuchel, “Functional impact of relative versus absolute sarcopenia in healthy older women,” Journal of the American Geriatrics Society, vol. 55, no. 11, pp. 1712–1719, 2007.
[24]
M. Visser, T. B. Harris, J. Langlois et al., “Body fat and skeletal muscle mass in relation to physical disability in very old men and women of the Framingham heart study,” Journals of Gerontology Series A, vol. 53, no. 3, pp. M214–M221, 1998.
[25]
F. Lauretani, C. R. Russo, S. Bandinelli et al., “Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia,” Journal of Applied Physiology, vol. 95, no. 5, pp. 1851–1860, 2003.
[26]
T. J. Marcell, “Sarcopenia: causes, consequences, and preventions,” Journals of Gerontology Series A, vol. 58, no. 10, pp. 911–916, 2003.
[27]
M. J. Delmonico, T. B. Harris, M. Visser et al., “Longitudinal study of muscle strength, quality, and adipose tissue infiltration,” American Journal of Clinical Nutrition, vol. 90, no. 6, pp. 1579–1585, 2009.
[28]
A. B. Newman, V. Kupelian, M. Visser et al., “Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort,” Journals of Gerontology Series A, vol. 61, no. 1, pp. 72–77, 2006.
[29]
D. R. Bouchard and I. Janssen, “Dynapenic-obesity and physical function in older adults,” Journals of Gerontology Series A, vol. 65, no. 1, pp. 71–77, 2010.
[30]
B. C. Clark and T. M. Manini, “Sarcopenia =/= dynapenia,” Journals of Gerontology Series A, vol. 63, no. 8, pp. 829–834, 2008.
[31]
T. M. Manini and B. C. Clark, “Dynapenia and aging: an update,” Journal of Gerontology Series A. In press.
[32]
B. H. Goodpaster, C. L. Carlson, M. Visser et al., “Attenuation of skeletal muscle and strength in the elderly: the health ABC study,” Journal of Applied Physiology, vol. 90, no. 6, pp. 2157–2165, 2001.
[33]
B. H. Goodpaster, S. W. Park, T. B. Harris et al., “The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study,” Journals of Gerontology Series A, vol. 61, no. 10, pp. 1059–1064, 2006.
[34]
R. N. Baumgartner, S. J. Wayne, D. L. Waters, I. Janssen, D. Gallagher, and J. E. Morley, “Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly,” Obesity Research, vol. 12, no. 12, pp. 1995–2004, 2004.
[35]
M. Zamboni, G. Mazzali, F. Fantin, A. Rossi, and V. Di Francesco, “Sarcopenic obesity: a new category of obesity in the elderly,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 18, no. 5, pp. 388–395, 2008.
[36]
K. A. Landers, G. R. Hunter, C. J. Wetzstein, M. M. Bamman, and R. L. Weinsier, “The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women,” Journals of Gerontology Series A, vol. 56, no. 10, pp. B443–B448, 2001.
[37]
J. F. Bean, D. K. Kiely, S. Herman et al., “The relationship between leg power and physical performance in mobility-limited older people,” Journal of the American Geriatrics Society, vol. 50, no. 3, pp. 461–467, 2002.
[38]
W. H. Ettinger, R. Burns, S. P. Messier et al., “A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis: the Fitness Arthritis and Seniors Trial (FAST),” Journal of the American Medical Association, vol. 277, no. 1, pp. 25–31, 1997.
[39]
L. M. Verbrugge, D. M. Gates, and R. W. Ike, “Risk factors for disability among U.S. adults with arthritis,” Journal of Clinical Epidemiology, vol. 44, no. 2, pp. 167–182, 1991.
[40]
R. Marks, “Obesity profiles with knee osteoarthritis: correlation with pain, disability, disease progression,” Obesity, vol. 15, no. 7, pp. 1867–1874, 2007.
[41]
S. E. Lamb, J. M. Guralnik, D. M. Buchner et al., “Factors that modify the association between knee pain and mobility limitation in older women: the women's health and aging study,” Annals of the Rheumatic Diseases, vol. 59, no. 5, pp. 331–337, 2000.
[42]
A. Powell, A. J. Teichtahl, A. E. Wluka, and F. M. Cicuttini, “Obesity: a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors,” British Journal of Sports Medicine, vol. 39, no. 1, pp. 4–5, 2005.
[43]
T. N. Kim, M. S. Park, S. J. Yang et al., “Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS),” Diabetes Care, vol. 33, no. 7, pp. 1497–1499, 2010.
[44]
I. S. Raj, S. R. Bird, and A. J. Shield, “Aging and the force-velocity relationship of muscles,” Experimental Gerontology, vol. 45, no. 2, pp. 81–90, 2010.
[45]
M. A. Fiatarone, E. F. O'Neill, N. D. Ryan et al., “Exercise training and nutritional supplementation for physical frailty in very elderly people,” The New England Journal of Medicine, vol. 330, no. 25, pp. 1769–1775, 1994.
[46]
R. A. Fielding, N. K. LeBrasseur, A. Cuoco, J. Bean, K. Mizer, and M. A. Fiatarone Singh, “High-velocity resistance training increases skeletal muscle peak power in older women,” Journal of the American Geriatrics Society, vol. 50, no. 4, pp. 655–662, 2002.
[47]
W. R. Frontera, C. N. Meredith, K. P. O'Reilly, H. G. Knuttgen, and W. J. Evans, “Strength conditioning in older men: skeletal muscle hypertrophy and improved function,” Journal of Applied Physiology, vol. 64, no. 3, pp. 1038–1044, 1988.
[48]
F. C. Hagerman, S. J. Walsh, R. S. Staron et al., “Effects of high-intensity resistance training on untrained older men. I. Strength, cardiovascular, and metabolic responses,” Journals of Gerontology Series A, vol. 55, no. 7, pp. B336–B346, 2000.
[49]
S. B. Votruba, M. A. Horvitz, and D. A. Schoeller, “The role of exercise in the treatment of obesity,” Nutrition, vol. 16, no. 3, pp. 179–188, 2000.
[50]
S. P. Messier, C. Legault, R. F. Loeser, et al., “Does high weight loss in older adults with knee osteoarthritis affect bone-on-bone joint loads and muscle forces during walking,” Osteoarthritis and Cartilage, vol. 19, pp. 272–280, 2011.
[51]
L. Fontana and S. Klein, “Aging, adiposity, and calorie restriction,” Journal of the American Medical Association, vol. 297, no. 9, pp. 986–994, 2007.
[52]
S. B. Racette, E. P. Weiss, D. T. Villareal et al., “One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue,” Journals of Gerontology Series A, vol. 61, no. 9, pp. 943–950, 2006.
[53]
L. K. Heilbronn, L. De Jonge, M. I. Frisard et al., “Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1539–1548, 2006.
[54]
J. J. Avila, J. A. Gutierres, M. E. Sheehy, I. E. Lofgren, and M. J. Delmonico, “Effect of moderate intensity resistance training during weight loss on body composition and physical performance in overweight older adults,” European Journal of Applied Physiology, vol. 109, no. 3, pp. 517–525, 2010.
[55]
D. T. Villareal, S. Chode, N. Parimi et al., “Weight loss, exercise, or both and physical function in obese older adults,” The New England Journal of Medicine, vol. 364, no. 13, pp. 1218–1229, 2011.
[56]
X. Z. He and D. W. Baker, “Body mass index, physical activity, and the risk of decline in overall health and physical functioning in late middle age,” American Journal of Public Health, vol. 94, no. 9, pp. 1567–1573, 2004.
[57]
M. M. Hillsdon, E. J. Brunner, J. M. Guralnik, and M. G. Marmot, “Prospective study of physical activity and physical function in early old age,” American Journal of Preventive Medicine, vol. 28, no. 3, pp. 245–250, 2005.
[58]
T. Manini, M. Marko, T. VanArnam et al., “Efficacy of resistance and task-specific exercise in older adults who modify tasks of everyday life,” Journals of Gerontology Series A, vol. 62, no. 6, pp. 616–623, 2007.
[59]
K. R. Vincent, R. W. Braith, R. A. Feldman, H. E. Kallas, and D. T. Lowenthal, “Improved cardiorespiratory endurance following 6 months of resistance exercise in elderly men and women,” Archives of Internal Medicine, vol. 162, no. 6, pp. 673–678, 2002.
[60]
M. Brown and J. O. Holloszy, “Effects of walking, jogging and cycling on strength, flexibility, speed and balance in 60- to 72-year olds,” Aging, vol. 5, no. 6, pp. 427–434, 1993.
[61]
S. L. Charette, L. McEvoy, G. Pyka et al., “Muscle hypertrophy response to resistance training in older women,” Journal of Applied Physiology, vol. 70, no. 5, pp. 1912–1916, 1991.
[62]
M. A. Fiatarone, E. C. Marks, N. D. Ryan, C. N. Meredith, L. A. Lipsitz, and W. J. Evans, “High-intensity strength training in nonagenarians. Effects on skeletal muscle,” Journal of the American Medical Association, vol. 263, no. 22, pp. 3029–3034, 1990.
[63]
A. Ferri, G. Scaglioni, M. Pousson, P. Capodaglio, J. Van Hoecke, and M. V. Narici, “Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age,” Acta Physiologica Scandinavica, vol. 177, no. 1, pp. 69–78, 2003.
[64]
R. U. Newton, K. H?kkinen, A. H?kkinen, M. McCormick, J. Volek, and W. J. Kraemer, “Mixed-methods resistance training increases power and strength of young and older men,” Medicine and Science in Sports and Exercise, vol. 34, no. 8, pp. 1367–1375, 2002.
[65]
J. F. Bean, D. K. Kiely, S. Larose, R. Goldstein, W. R. Frontera, and S. G. Leveille, “Are changes in leg power responsible for clinically meaningful improvements in mobility in older adults?” Journal of the American Geriatrics Society, vol. 58, no. 12, pp. 2363–2368, 2010.
[66]
D. N. Proctor, W. E. Sinning, J. M. Walro, G. C. Sieck, and P. W. R. Lemon, “Oxidative capacity of human muscle fiber types: effects of age and training status,” Journal of Applied Physiology, vol. 78, no. 6, pp. 2033–2038, 1995.
[67]
L. E. Davidson, R. Hudson, K. Kilpatrick et al., “Effects of exercise modality on insulin resistance and functional limitation in older adults: a randomized controlled trial,” Archives of Internal Medicine, vol. 169, no. 2, pp. 122–131, 2009.
[68]
T. M. Manini, A. B. Newman, R. Fielding et al., “Effects of exercise on mobility in obese and nonobese older adults,” Obesity, vol. 18, no. 6, pp. 1168–1175, 2010.
[69]
T. N. Frimel, D. R. Sinacore, and D. T. Villareal, “Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults,” Medicine and Science in Sports and Exercise, vol. 40, no. 7, pp. 1213–1219, 2008.
[70]
P. Chomentowski, J. J. Dubé, F. Amati et al., “Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults,” Journals of Gerontology Series A, vol. 64, no. 5, pp. 575–580, 2009.
[71]
D. T. Villareal, M. Banks, D. R. Sinacore, C. Siener, and S. Klein, “Effect of weight loss and exercise on frailty in obese older adults,” Archives of Internal Medicine, vol. 166, no. 8, pp. 860–866, 2006.
[72]
S. D. Anton, T. M. Manini, V. A. Milsom, et al., “Effects of a weight loss plus exercise program on physical function in overweight, older women: a randomized controlled trial,” Clinical Interventions in Aging, vol. 6, pp. 141–149, 2011.