全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2.5d傅氏变换法声波方程数值模拟及精度分析

Keywords: 2.5d,声波方程,傅氏变换法,高阶有限差分法,稳定性条件,精度分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文在前人研究的基础上,提出了2.5d傅氏变换法的高阶有限差分算法,推导出2.5d高阶差分算子的稳定性条件,重点进行了2.5d傅氏变换法的精度分析,定性分析了影响2.5d傅氏变换法有限差分数值解精度的可能因素,获得了确保2.5d有限差分数值解逼近3d解析解的模拟参数选取的基本原则。数值模拟结果表明:在恰当的波数最大值限制条件的约束下,可变波数步长和高阶差分算子的使用能够确保2.5d数值解满足3d地震波场数值模拟要求。该算法模拟结果正确,精度高,能够节省计算成本,非常适合处理大尺度地震勘探问题。

References

[1]  blcistcinn.twoandonehalfdimensionalin-planewavepropagation[j].geophysicalprospectiy.1986,34:686-703[2]linercl.thcoryofa2.5dacousticwaveequationforconstantdensitymedia.geophysics,1991,56(12):2114-2117[3]stockwclljw.2.5dwaveequationandhigh-frcquencyasymptotic[j].geophysics.1995,60(2):556-562[4]narayanjp.2.5dnumericalsimulationofacousticwavepropagation.pureandappliedgeophysics,1998,151;47-61[5]williamsonpr.acriticalreviewofacousticwavemodelingproceduresin2.5dimensions.geophysics,1995,60(2):591-595[6]randallcj.multipoleacousticwavcforminnonaxi-symmetricboreholesandformations[j].jacoustsocam.1991,90(3):1620-1631[7]okamotot.tclescismicsyntheticsobtainedfrom3dcalculationsin2dmedia[j].geophysjint.1994,118:613-622[8]songzm,williamsonpr.frequency-domainacous-tic-wavemodelingandinversionforcrossholedata;partl2.5dmodelingmethod.geophysics,1995,60(3):784-795[9]novaisa,santosi.t.2.5dfinite-differencesolutionoftheacousticwaveequation.geophysicalprospec-tirig,2005,53:523-531[10]takenankah.a2.5dtime-domainelectrodynamicsequationforageneralanisotropicmedium.geophysicsjournalinternational,1996,127:fl-f4[11]caosh.2.5dmodelingofseismicwavepropaga-tion;boundaryconditionstabilitycriterionandeffi-ciency[j].geophysics.1998,63(6):2082-2090[12]silvanf,costajandnovaisa.2.5danisotropice-lacticfinitcdifferencemodeling.expandedabstractsof76thsegmtg,2006,2275[13]刘洋,李承楚,牟永光.任意偶数阶精度有限差分法数值模拟.石油地球物理勘探,1998,33(1);l-10[14]廖振鹏.近场波动的数值模拟.力学进展,1997,27(2):193-212[15]孙建国.声波散射数值模拟的两种新方案.吉林大学学报,2006,5:863-868
[2]  blcistcinn.twoandonehalfdimensionalin-planewavepropagation[j].geophysicalprospectiy.1986,34:686-703
[3]  linercl.thcoryofa2.5dacousticwaveequationforconstantdensitymedia.geophysics,1991,56(12):2114-2117
[4]  stockwclljw.2.5dwaveequationandhigh-frcquencyasymptotic[j].geophysics.1995,60(2):556-562
[5]  narayanjp.2.5dnumericalsimulationofacousticwavepropagation.pureandappliedgeophysics,1998,151;47-61
[6]  williamsonpr.acriticalreviewofacousticwavemodelingproceduresin2.5dimensions.geophysics,1995,60(2):591-595
[7]  randallcj.multipoleacousticwavcforminnonaxi-symmetricboreholesandformations[j].jacoustsocam.1991,90(3):1620-1631
[8]  okamotot.tclescismicsyntheticsobtainedfrom3dcalculationsin2dmedia[j].geophysjint.1994,118:613-622
[9]  songzm,williamsonpr.frequency-domainacous-tic-wavemodelingandinversionforcrossholedata;partl2.5dmodelingmethod.geophysics,1995,60(3):784-795
[10]  novaisa,santosi.t.2.5dfinite-differencesolutionoftheacousticwaveequation.geophysicalprospec-tirig,2005,53:523-531
[11]  takenankah.a2.5dtime-domainelectrodynamicsequationforageneralanisotropicmedium.geophysicsjournalinternational,1996,127:fl-f4
[12]  caosh.2.5dmodelingofseismicwavepropaga-tion;boundaryconditionstabilitycriterionandeffi-ciency[j].geophysics.1998,63(6):2082-2090
[13]  silvanf,costajandnovaisa.2.5danisotropice-lacticfinitcdifferencemodeling.expandedabstractsof76thsegmtg,2006,2275
[14]  刘洋,李承楚,牟永光.任意偶数阶精度有限差分法数值模拟.石油地球物理勘探,1998,33(1);l-10
[15]  廖振鹏.近场波动的数值模拟.力学进展,1997,27(2):193-212
[16]  孙建国.声波散射数值模拟的两种新方案.吉林大学学报,2006,5:863-868

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133