OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
集合滤波和三维变分混合数据同化方法研究
Keywords: 混合数据同化方法,集合调整卡尔曼滤波,三维变分
Abstract:
?发展了一种新的混合数据同化方法——基于集合滤波和三维变分的混合数据同化方法。该方法将集合调整卡尔曼滤波(ensembleadjustmentkalmanfilter,eakf)得到的集合样本扰动通过一个转换矩阵的形式直接作用到背景场上,利用顺序滤波的思想得到分析场的一个扰动;然后在三维变分(threedimensionalvariationalanalysis,3d-var)的框架下与观测数据进行拟合,从而给出分析场的最优估计。文中以lorenz63模型为例,开展了理想数据同化试验,结果表明,相比于集合调整卡尔曼滤波,这种新的混合同化方法可以给出更好的同化结果。
References
[1] | ledimetfx,talagrando.variationalalgorithmsforanalysisandassimilationofmeteorologicalobservations:theoreticalaspects[j].tellus,1986,38a:97-110.[2]evenseng..sequentialdataassimilationwithanonlinearquasi-geostrophicmodelusingmontecarlomethodstoforecasterrorstatistics[j].jgeophysres,1994,99:10143-10162.[3]courtierp,thepautjn,hollingswortha.astrategyforoperationalimplementationof4dvar,usinganincrementalapproach[j].quartjroymeteorsoc,1994,120:1367-1387.[4]hamilltm,snyderc.ahybridensemblekalmanfilter—3dvariationalanalysisscheme[j].monwearev,2000,128:2905-2919.[5]whitakerjs,hamilltm.ensembledataassimilationwithoutperturbedobservations[j].monwearev,2002,130:1913-1924.[6]corazzam,kalnaye,jpatild,etal.useofthebreedingtechniqueintheestimationofthebackgrounderrorcovariancematrixforaquasigeostrophicmodel[c]//amssymposiumonobservations,dataassimilationandprobabilisticprediction.orland,florida,2002:154-157.[7]zupanskim.maximumlikelihoodensemblefilter:theoreticalaspects[j].monwearev,2005,133:1710-1726.[8]lorencac.thepotentialoftheensemblekalmanfilterfornwp:acomparisonwith4d-var[j].quartjroymeteorsoc,2003,129:3183-3203.[9]buehnerm.ensemble-derivedstationaryandflow-dependentbackgrounderrorcovariances:evaluationinaquasi-operationnwpsetting[j].quartjroymeteorsoc,2005,131:1013-1043.[10]wangx,hamilltm,whitakerjs,etal.acomparisonofhybridensembletransformkalmanfilter—optimuminterpolationandensemblesquare-rootfilteranalysisschemes[j].monwearev,2007b,135:1055-1076.[11]bishopch,ethertonbj,majumdarsj.adaptivesamplingwiththeensembletransformkalmanfilter.parti:theoreticalaspects[j].monwearev,2001,129:420-436.[12]huntbr,coauthors.four-dimensionalensemblekalmanfiltering[j].tellus,2004,56a:273-277.[13]fertigej,harlimj,huntbr.acomparativestudyof4d-varanda4densemblefilter:perfectmodelsimulationswithlorenz-96[j].tellus,2007,59a:96-100.[14]liuchengsi,xiaoqingnong,wangbin.anensemble-basedfour-dimensionalvariationaldataassimilationscheme.partⅰ:technicalformulationandpreliminarytest[j].monwearev,2008,136:3363-3372.[15]zhangf,mengz,jamesah.couplingensemblekalmanfilterwithfour-dimensionalvariationaldataassimilation[j].advatmossci,2009,26(1):1-8.[16]wanl,zhuj,wangh,etal.a“dressed”ensemblekalmanfilterusingthehybridcoordinateoceanmodelinthepacific[j].advatmossci,2009,26(5):1042-1052.[17]courtierp,thepautjn,hollingswortha.variationalmethods[j].jmeteorsocjapan,1997,75:211-218.[18]lorencac.analysismethodsfornumericalweatherprediction[j].quartjroymeteorsoc,1986,112:1177-1194.[19]andersonjl.anensembleadjustmentkalmanfilterfordataassimilation[j].monwearev,2001,129:2884-2903.[20]houtekamerpl,mitchellhl.asequentialensemblekalmanfilterforatmosphericdataassimilation[j].monwearev,2001,129:123-137.[21]andersonjl.alocalleastsquaresframeworkforensemblefiltering[j].monwearev,2003,131:634-642.[22]liudc,nocedalj.onthelimitedmemorybfgsmethodforlargescaleoptimization[j].mathematicalprogramming,1989,45:503-528.[23]lorenzen.deterministicnon-periodicflow[j].jatmossci,1963,20:130-141.[24]jazwinskiah.stochasticprocessesandfilteringtheory[m].newyork:academicpress,1970:376.[25]andersonjl.amethodforproducingandevaluatingprobabilisticforecastsfromensemblemodelintegrations[j].jclimate,1996,9:1518-1530.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|