Epigenetic modifications to DNA, such as DNA methylation, can expand a genome’s regulatory flexibility, and thus may contribute to the evolution of phenotypic plasticity. Recent work has demonstrated the importance of DNA methylation in alternative queen and worker “castes” in social insects, particularly honeybees. Social insects are an excellent system for addressing questions about epigenetics and evolution because: (1) they have dramatic caste polyphenisms that appear to be tied to differential methylation, (2) DNA methylation is widespread in various groups of social insects, and (3) there are intriguing connections between the social environment and DNA methylation in many species, from insects to mammals. In this article, we review research on honeybees, and, when available, other social insects, on DNA methylation and queen and worker caste differences. We outline a conceptual framework for the effects of methylation on caste determination in honeybees that may help guide studies of epigenetic regulation in other polyphenic taxa. Finally, we suggest future paths of study for social insect epigenetic research, including the importance of comparative studies of DNA methylation on a broader range of species, and highlight some key unanswered mechanistic questions about how DNA methylation affects gene regulation. 1. Introduction Phenotypic plasticity is an important biological phenomenon that allows organisms with same genotype to respond adaptively to variable biotic and abiotic environments. There are several molecular mechanisms that can contribute to genomic flexibility and thus phenotypic plasticity, including transcriptional regulation, posttranscriptional modification, alternative splicing, and epigenetic modifications of DNA (reviewed in [1]). In this paper, we explore the potential role of epigenetic modifications in phenotypic plasticity in social insects in the order Hymenoptera (bees, ants, and wasps), a group of animals that exhibit many remarkable forms of morphological and behavioral plasticity [2]. Phenotypic polymorphism has arisen many times in different insect lineages [3] and not always among eusocial insects. Other well-studied examples of extreme phenotypic plasticity in insects include pea aphids with winged and wingless morphs, as well as sexual and asexual generations (reviewed in [4]), horned and hornless morphs in dung beetles [5], and phase differences in migratory locusts [6]. Studies of insects, and especially social insects, are providing intriguing new insights into the relevance of epigenetic modifications of DNA to
References
[1]
T. Y. Zhang and M. J. Meaney, “Epigenetics and the environmental regulation of the genome and its function,” Annual Review of Psychology, vol. 61, pp. 439–466, 2010.
[2]
E. O. Wilson, The Insect Societies, The Belknap Press of Harvard University Press, Cambridge, Mass, USA, 2nd edition, 1971.
[3]
N. Pike, J. A. Whitfield, and W. A. Foster, “Ecological correlates of sociality in Pemphigus aphids, with a partial phylogeny of the genus,” BMC Evolutionary Biology, vol. 7, article 185, 2007.
[4]
J. C. Simon, S. Stoeckel, and D. Tagu, “Evolutionary and functional insights into reproductive strategies of aphids,” Comptes Rendus Biologies, vol. 333, no. 6-7, pp. 488–496, 2010.
[5]
A. P. Moczek, J. Andrews, T. Kijimoto, Y. Yerushalmi, and D. J. Rose, “Emerging model systems in evo-devo: horned beetles and the origins of diversity,” Evolution and Development, vol. 9, no. 4, pp. 323–328, 2007.
[6]
D. J. Nolte, “Phase transformation and chiasma formation in locusts,” Chromosoma, vol. 21, no. 2, pp. 123–139, 1967.
[7]
D. Crews, “Epigenetics and its implications for behavioral neuroendocrinology,” Frontiers in Neuroendocrinology, vol. 29, no. 3, pp. 344–357, 2008.
[8]
A. P. Moczek and E. C. Snell-Rood, “The basis of bee-ing different: the role of gene silencing in plasticity,” Evolution and Development, vol. 10, no. 5, pp. 511–513, 2008.
[9]
C. Darwin, The Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life, John Murray, London, UK, 1859.
[10]
G. F. Oster and E. O. Wilson, “Caste and ecology in the social insects,” Monographs in Population Biology, vol. 12, pp. 1–352, 1978.
[11]
G. E. Julian, J. H. Fewell, J. Gadau, R. A. Johnson, and D. Larrabee, “Genetic determination of the queen caste in an ant hybrid zone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8157–8160, 2002.
[12]
V. P. Volny and D. M. Gordon, “Genetic basis for queen-worker dimorphism in a social insect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 9, pp. 6108–6111, 2002.
[13]
W. O. H. Hughes, S. Sumner, S. Van Borm, and J. J. Boomsma, “Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9394–9397, 2003.
[14]
J. Foucaud, A. Estoup, A. Loiseau, O. Rey, and J. Orivel, “Thelytokous parthenogenesis, male clonality and genetic caste determination in the little fire ant: new evidence and insights from the lab,” Heredity, vol. 105, no. 2, pp. 205–212, 2010.
[15]
T. Schwander, N. Lo, M. Beekman, B. P. Oldroyd, and L. Keller, “Nature versus nurture in social insect caste differentiation,” Trends in Ecology and Evolution, vol. 25, no. 5, pp. 275–282, 2010.
[16]
B. H?lldobler and E. O. Wilson, The Ants, The Belknap Press of Harvard University Press, Cambridge, Mass, USA, 1990.
[17]
C. R. Smith, A. L. Toth, A. V. Suarez, and G. E. Robinson, “Genetic and genomic analyses of the division of labour in insect societies,” Nature Reviews Genetics, vol. 9, no. 10, pp. 735–748, 2008.
[18]
H. K. Reeve, “Polistes,” in The Social Biology of Wasps, K. G. Ross and R. G. Matthews, Eds., pp. 99–148, Cornell University Press, Ithaca, NY, USA, 1991.
[19]
M. L. Winston, The Biology of the Honey Bee, Harvard University Press, Cambridge, Mass, USA, 1987.
[20]
M. Szyf, P. McGowan, and M. J. Meaney, “The social environment and the epigenome,” Environmental and Molecular Mutagenesis, vol. 49, no. 1, pp. 46–60, 2008.
[21]
R. Kucharski, J. Maleszka, S. Foret, and R. Maleszka, “Nutritional control of reproductive status in honeybees via DNA methylation,” Science, vol. 319, no. 5871, pp. 1827–1830, 2008.
[22]
N. Elango, B. G. Hunt, M. A. D. Goodisman, and S. V. Yi, “DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11206–11211, 2009.
[23]
F. Lyko, S. Foret, R. Kucharski, S. Wolf, C. Falckenhayn, and R. Maleszka, “The honey bee epigenomes: differential methylation of brain DNA in queens and workers,” PLoS Biology, vol. 8, no. 11, Article ID e1000506, 2010.
[24]
M. R. Kronforst, D. C. Gilley, J. E. Strassmann, and D. C. Queller, “DNA methylation is widespread across social Hymenoptera,” Current Biology, vol. 18, no. 7, pp. R287–R288, 2008.
[25]
S. Tajima and I. Suetake, “Regulation and function of DNA methylation in vertebrates,” Journal of Biochemistry, vol. 123, no. 6, pp. 993–999, 1998.
[26]
D. C. Queller, “Theory of genomic imprinting conflict in social insects,” BMC Evolutionary Biology, vol. 3, article 15, 2003.
[27]
D. Haig, “The kinship theory of genomic imprinting,” Annual Review of Ecology and Systematics, vol. 31, pp. 9–32, 2000.
[28]
F. Sato, S. Tsuchiya, S. J. Meltzer, and K. Shimizu, “MicroRNAs and epigenetics,” The FEBS Journal, vol. 278, no. 10, pp. 1598–1609, 2011.
[29]
M. Mandrioli, “A new synthesis in epigenetics: towards a unified function of DNA methylation from invertebrates to vertebrates,” Cellular and Molecular Life Sciences, vol. 64, no. 19-20, pp. 2522–2524, 2007.
[30]
A. Razin and H. Cedar, “DNA methylation and gene expression,” Microbiological Reviews, vol. 55, no. 3, pp. 451–458, 1991.
[31]
B. F. Vanyushin, “Methylation of adenine residues in DNA of eukaryotes,” Molekulyarnaya Biologiya, vol. 39, no. 4, pp. 557–566, 2005.
[32]
V. A. Spencer and J. R. Davie, “Role of covalent modifications of histones in regulating gene expression,” Gene, vol. 240, no. 1, pp. 1–12, 1999.
[33]
A. Zemach, I. E. McDaniel, P. Silva, and D. Zilberman, “Genome-wide evolutionary analysis of eukaryotic DNA methylation,” Science, vol. 328, no. 5980, pp. 916–919, 2010.
[34]
M. G. Goll and T. H. Bestor, “Eukaryotic cytosine methyltransferases,” Annual Review of Biochemistry, vol. 74, pp. 481–514, 2005.
[35]
C. Feschotte and E. J. Pritham, “DNA transposons and the evolution of eukaryotic genomes,” Annual Review of Genetics, vol. 41, pp. 331–368, 2007.
[36]
S. Foret, R. Kucharski, Y. Pittelkow, G. A. Lockett, and R. Maleszka, “Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes,” BMC Genomics, vol. 10, article 472, 2009.
[37]
I. C. G. Weaver, N. Cervoni, F. A. Champagne et al., “Epigenetic programming by maternal behavior,” Nature Neuroscience, vol. 7, no. 8, pp. 847–854, 2004.
[38]
C. Anastasiadou, A. Malousi, N. Maglaveras, and S. Kouidou, “Human epigenome data reveal increased CpG methylation in alternatively spliced sites and putative exonic splicing enhancers,” DNA and Cell Biology, vol. 30, no. 5, pp. 267–275, 2011.
[39]
S. Shukla, E. Kavak, M. Gregory et al., “CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing,” Nature, vol. 479, no. 7371, pp. 74–79, 2011.
[40]
M. G. Goll, F. Kirpekar, K. A. Maggert et al., “Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2,” Science, vol. 311, no. 5759, pp. 395–398, 2006.
[41]
F. Lyko and R. Maleszka, “Insects as innovative models for functional studies of DNA methylation,” Trends in Genetics, vol. 27, no. 4, pp. 127–131, 2011.
[42]
F. Lyko, “DNA methylation learns to fly,” Trends in Genetics, vol. 17, no. 4, pp. 169–172, 2001.
[43]
M. Mandrioli and N. Volpi, “The genome of the lepidopteran Mamestra brassicae has a vertebrate-like content of methyl-cytosine,” Genetica, vol. 119, no. 2, pp. 187–191, 2003.
[44]
K. M. Glastad, B. G. Hunt, S. V. Yi, and M. A. D. Goodisman, “DNA methylation in insects: on the brink of the epigenomic era,” Insect Molecular Biology, vol. 20, no. 5, pp. 553–565, 2011.
[45]
Y. Wang, M. Jorda, P. L. Jones et al., “Functional CpG methylation system in a social insect,” Science, vol. 314, no. 5799, pp. 645–647, 2006.
[46]
M. Schaefer and F. Lyko, “DNA methylation with a sting: an active DNA methylation system in the honeybee,” BioEssays, vol. 29, no. 3, pp. 208–211, 2007.
[47]
B. G. Hunt, J. A. Brisson, S. V. Yi, and M. A. D. Goodisman, “Functional conservation of DNA methylation in the pea aphid and the honeybee,” Genome Biology and Evolution, vol. 2, no. 1, pp. 719–728, 2010.
[48]
T. K. Walsh, J. A. Brisson, H. M. Robertson et al., “A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum,” Insect Molecular Biology, vol. 19, no. 2, pp. 215–228, 2010.
[49]
W. D. Hamilton, “The genetical evolution of social behaviour. I,” Journal of Theoretical Biology, vol. 7, no. 1, pp. 1–16, 1964.
[50]
B. Tycko, “Allele-specific DNA methylation: beyond imprinting,” Human Molecular Genetics, vol. 19, no. 2, pp. R210–R220, 2010.
[51]
I. C. G. Weaver, F. A. Champagne, S. E. Brown et al., “Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life,” Journal of Neuroscience, vol. 25, no. 47, pp. 11045–11054, 2005.
[52]
M. J. Meaney and M. Szyf, “Maternal care as a model for experience-dependent chromatin plasticity,” Trends in Neuroscience, vol. 28, no. 9, pp. 456–463, 2005.
[53]
T. A. Linksvayer and M. J. Wade, “The evolutionary origin and elaboration of sociality in the aculeate hymenoptera: maternal effects, sib-social effects, and heterochrony,” Quarterly Review of Biology, vol. 80, no. 3, pp. 317–336, 2005.
[54]
T. A. Linksvayer, “Ant species differences determined by epistasis between brood and worker genomes,” PLoS One, vol. 2, no. 10, article e994, 2007.
[55]
D. E. Wheeler, “Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications,” American Naturalist, vol. 128, no. 1, pp. 13–34, 1986.
[56]
E. L. Vargo and L. Passera, “Gyne development in the Argentine ant Iridomyrmex humilis: role of overwintering and queen control,” Physiological Entomology, vol. 17, no. 2, pp. 193–201, 1992.
[57]
S. Suryanarayanan, J. C. Hermanson, and R. L. Jeanne, “A mechanical signal biases caste development in a social wasp,” Current Biology, vol. 21, no. 3, pp. 231–235, 2011.
[58]
J. H. Werren, S. Richards, C. A. Desjardins et al., “Functional and evolutionary insights from the genomes of three parasitoid nasonia species,” Science, vol. 327, no. 5963, pp. 343–348, 2010.
[59]
R. Bonasio, G. Zhang, C. Ye et al., “Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator,” Science, vol. 329, no. 5995, pp. 1068–1071, 2010.
[60]
S. Nygaard, G. Zhang, M. Schi?tt et al., “The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming,” Genome Research, vol. 21, no. 8, pp. 1339–1348, 2011.
[61]
C. R. Smith, C. D. Smith, H. M. Robertson et al., “Draft genome of the red harvester ant Pogonomyrmex barbatus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5667–5672, 2011.
[62]
C. D. Smith, A. Zimin, C. Holt et al., “Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile),” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5673–5678, 2011.
[63]
G. Suen, C. Teiling, L. Li et al., “The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle,” PLoS Genetics, vol. 7, no. 2, Article ID e1002007, 2011.
[64]
Y. Wurm, J. Wang, O. Riba-Grognuz et al., “The genome of the fire ant Solenopsis invicta,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5679–5684, 2011.
[65]
J. K. Colbourne, M. E. Pfrender, D. Gilbert et al., “The ecoresponsive genome of Daphnia pulex,” Science, vol. 331, no. 6017, pp. 555–561, 2011.
[66]
V. Krauss, C. Eisenhardt, and T. Unger, “The genome of the stick insect Medauroidea extradentata is strongly methylated within genes and repetitive DNA,” PLoS One, vol. 4, no. 9, Article ID e7223, 2009.
[67]
S. Tweedie, H. H. Ng, A. L. Barlow, B. M. Turner, B. Hendrich, and A. Bird, “Vestiges of a DNA methylation system in Drosophila melanogaster?” Nature Genetics, vol. 23, no. 4, pp. 389–390, 1999.
[68]
H. Xiang, J. Zhu, Q. Chen et al., “Single base-resolution methylome of the silkworm reveals a sparse epigenomic map,” Nature Biotechnology, vol. 28, no. 5, pp. 516–520, 2010.
[69]
L. M. Field, “Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer),” Biochemical Journal, vol. 349, no. 3, pp. 863–868, 2000.
[70]
M. Ono, J. J. Swanson, L. M. Field, A. L. Devonshire, and B. D. Siegfried, “Amplification and methylation of an esterase gene associated with insecticide-resistance in greenbugs, Schizaphis graminum (Rondani) (Homoptera: Aphididae),” Insect Biochemistry and Molecular Biology, vol. 29, no. 12, pp. 1065–1073, 1999.
[71]
E. F. Kirkness, B. J. Haas, W. Sun et al., “Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 27, pp. 12168–12173, 2010.
[72]
Y. Y. Shi, Z. Y. Huang, Z. J. Zeng, Z. L. Wang, X. B. Wu, and W. Y. Yan, “Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, apidae),” PLoS One, vol. 6, no. 4, Article ID e18808, 2011.
[73]
T. Ikeda, S. Furukawa, J. Nakamura, T. Sasaki, and M. Sasaki, “CpG methylation in the hexamerin 110 gene in the European honeybee, apis mellifera,” Journal of Insect Science, vol. 11, no. 74, pp. 1–11, 2011.
[74]
M. Kamakura, “Royalactin induces queen differentiation in honeybees,” Nature, vol. 473, no. 7348, pp. 478–483, 2011.
[75]
S. F. Gilbert and D. Epel, Ecological Developmental Biology, Sinauer Associates, Sunderland, Mass, USA, 2009.
[76]
J. D. Evans and D. E. Wheeler, “Differential gene expression between developing queens and workers in the honey bee, Apis mellifera,” Proceedings of the National Academy of Sciences, vol. 96, no. 10, pp. 5575–5580, 1999.
[77]
M. Corona, E. Estrada, and M. Zurita, “Differential expression of mitochondrial genes between queens and workers during caste determination in the honeybee Apis mellifera,” Journal of Experimental Biology, vol. 202, no. 8, pp. 929–938, 1999.
[78]
A. R. Barchuk, A. S. Cristino, R. Kucharski, L. F. Costa, Z. L. P. Simoes, and R. Maleszka, “Molecular determinants of caste determination in the highly eusocial honeybee Apis mellifera,” BMC Developmental Biology, vol. 7, no. 70, 2007.
[79]
D. E. Wheeler, N. Buck, and J. D. Evans, “Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera,” Insect Molecular Biology, vol. 15, no. 5, pp. 597–602, 2006.
[80]
A. Regev, M. J. Lamb, and E. Jablonka, “The role of DNA methylation in invertebrates: developmental regulation or genome defense?” Molecular Biology and Evolution, vol. 15, no. 7, pp. 880–891, 1998.
[81]
S. G. Brady, S. Sipes, A. Pearson, and B. N. Danforth, “Recent and simultaneous origins of eusociality in halictid bees,” Proceedings of the Royal Society B, vol. 273, no. 1594, pp. 1643–1649, 2006.
[82]
R. Cervo, “Polistes wasps and their social parasites: an overview,” Annales Zoologici Fennici, vol. 43, no. 5-6, pp. 531–549, 2006.
[83]
F. B. Noll and J. W. Wenzel, “Caste in the swarming wasps: “Queenless” societies in highly social insects,” Biological Journal of the Linnean Society, vol. 93, no. 3, pp. 509–522, 2008.
[84]
J. T. Costa, The Other Insect Societies, Belknap Press of Harvard University Press, Cambridge, Mass, USA, 2006.
[85]
X. Zhou, F. M. Oi, and M. E. Scharf, “Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 12, pp. 4499–4504, 2006.
[86]
J. Korb, “Termites,” Current Biology, vol. 17, no. 23, pp. R995–R999, 2007.
[87]
G. A. Lockett, P. Helliwell, and R. Maleszka, “Involvement of DNA methylation in memory processing in the honey bee,” NeuroReport, vol. 21, no. 12, pp. 812–816, 2010.