%0 Journal Article %T Epigenetics in Social Insects: A New Direction for Understanding the Evolution of Castes %A Susan A. Weiner %A Amy L. Toth %J Genetics Research International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/609810 %X Epigenetic modifications to DNA, such as DNA methylation, can expand a genome¡¯s regulatory flexibility, and thus may contribute to the evolution of phenotypic plasticity. Recent work has demonstrated the importance of DNA methylation in alternative queen and worker ¡°castes¡± in social insects, particularly honeybees. Social insects are an excellent system for addressing questions about epigenetics and evolution because: (1) they have dramatic caste polyphenisms that appear to be tied to differential methylation, (2) DNA methylation is widespread in various groups of social insects, and (3) there are intriguing connections between the social environment and DNA methylation in many species, from insects to mammals. In this article, we review research on honeybees, and, when available, other social insects, on DNA methylation and queen and worker caste differences. We outline a conceptual framework for the effects of methylation on caste determination in honeybees that may help guide studies of epigenetic regulation in other polyphenic taxa. Finally, we suggest future paths of study for social insect epigenetic research, including the importance of comparative studies of DNA methylation on a broader range of species, and highlight some key unanswered mechanistic questions about how DNA methylation affects gene regulation. 1. Introduction Phenotypic plasticity is an important biological phenomenon that allows organisms with same genotype to respond adaptively to variable biotic and abiotic environments. There are several molecular mechanisms that can contribute to genomic flexibility and thus phenotypic plasticity, including transcriptional regulation, posttranscriptional modification, alternative splicing, and epigenetic modifications of DNA (reviewed in [1]). In this paper, we explore the potential role of epigenetic modifications in phenotypic plasticity in social insects in the order Hymenoptera (bees, ants, and wasps), a group of animals that exhibit many remarkable forms of morphological and behavioral plasticity [2]. Phenotypic polymorphism has arisen many times in different insect lineages [3] and not always among eusocial insects. Other well-studied examples of extreme phenotypic plasticity in insects include pea aphids with winged and wingless morphs, as well as sexual and asexual generations (reviewed in [4]), horned and hornless morphs in dung beetles [5], and phase differences in migratory locusts [6]. Studies of insects, and especially social insects, are providing intriguing new insights into the relevance of epigenetic modifications of DNA to %U http://www.hindawi.com/journals/gri/2012/609810/