Chen X, Varki A. Advances in the biology and chemistry of sialic acids[J]. ACS Chemical Biology, 2009, 5(2):163-176.
[2]
Tao F, Zhang Y, Ma C, et al. Biotechnological production and applications of N-acetyl-D-neuraminic acid:current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 87(4):1281-1289.
[3]
Rosenberg A, Schengrund CL. Biological roles of sialic acid[M]. New York:Plenum Publishing Corporation, 1976.
Kelm S, Schauer R, Crocker P. The Sialoadhesins—a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily[J]. Glycoconjugate Journal, 1996, 13(6):913-926.
[7]
B?hm S, Schwab I, Lux A, et al. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG[J]. Seminars in Immunopathology, 2012, 34(3):443-453.
[8]
Wielga P, Braszko JJ. The participation of sialic acids in microglia–neuron interactions[J]. Cellular Immunology, 2012, 273(1):17-22.
[9]
Bondioli L, Ruozi B, Belletti D, et al. Sialic acid as a potential approach for the protection and targeting of nanocarriers[J]. Expert Oopinion on Drug Delivery, 2011, 8(7):921-937.
[10]
Juneja LR, Koketsu M, Nishimoto K, et al. Large-scale preparation of sialic-acid from chalaza and egg-yolk membrane[J]. Carbohydrate Research, 1991, 214(1):179-186.
[11]
Koketsu M, Juneja LR, Kawanami H, et al. Preparation of N-acetylneuraminic acid from delipidated egg yolk[J]. Glycoconjugate Journal, 1992, 9(2):70-74.
[12]
Cornforth J, Firth M, Gottschalk A. The synthesis of N-acetylneura-minic acid[J]. Biochemical J, 1958, 68(1):57.
[13]
Ferrero Má, Aparicio LR. Biosynthesis and production of polysialic acids in bacteria[J]. Applied Microbiology and Biotechnology, 2010, 86(6):1621-1635.
[14]
Li Y, Yu H, Cao H, et al. Pasteurella multocida sialic acid aldolase:
[15]
Maru I, Ohta Y, Murata K, et al. Molecular cloning and identification of N-acyl-D-glucosamine 2-epimerase from porcine kidney as a renin-binding protein[J]. Journal of Biological Chemistry, 1996, 271(27):16294-16299.
Lee YC, Wu HM, Wang WC, et al. The central cavity from the(α/α)6 barrel structure of Anabaena sp. CH1 N-acetyl-D- glucosamine 2-epimerase contains two key histidine residues for reversible conversion[J]. Journal of Molecular Biology, 2007, 367(3):895-908.
[18]
Lee YC, Chien HC, Hsu WH. Production of N-acetyl-D-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase and Escherichia coli N-acetyl-D-neuraminic acid lyase[J]. Journal of Biotechnology, 2007, 129(3):453-460.
[19]
Ishikawa M, Koizumi S. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli[J]. Carbohydrate Research, 2010, 345(18):2605-2609.
[20]
Kang J, Gu P, Wang Y, et al. Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli[J]. Metabolic Engin-eering, 2012, 14(6):623-629.
[21]
Schauer R. Biochemistry and role of sialic acids[M]// Rosenberg A. Biology of the Sialic Acids. New York:Plenum Publishing Corporation, 1995:57-67.
[22]
Yu R, Ledeen R. Configuration of the ketosidic bond of sialic acid[J]. Journal of Biological Chemistry, 1969, 244(5):1306-1313.
[23]
Varki A. Diversity in the sialic acids[J]. Glycobiology, 1992, 2(1):25-40.
[24]
Schauer R. Sialic acids as regulators of molecular and cellular inter-actions[J]. Current Opinion in Structural Biology, 2009, 19(5):507-514.
[25]
Schauer R. Achievements and challenges of sialic acid research
[26]
Hu S, Chen J, Yang Z, et al. Coupled bioconversion for preparation of N-acetyl-D-neuraminic acid using immobilized N-acetyl-D-glucosamine-2-epimerase and N-acetyl-D-neuraminic acid lyase[J]. Applied Microbiology and Biotechnology, 2010, 85(5):1383-1391.
[27]
Kelm S, Schauer R. Sialic acids in molecular and cellular interactions[J]. International Review of Cytology, 1997, 175:137-240.
[28]
Oriquat GA, Saleem TH, Abdullah, ST, et al. Soluble CD14, sialic acid and L-fucose in breast milk and their role in increasing the immunity of breast-fed infants[J]. American Journal of Biochemistry and Biotechnology, 2011, 7(1):21-28.
[29]
Sprenger N, Julita M, Donnicola D, et al. Sialic acid feeding aged rats rejuvenates stimulated salivation and colon enteric neuron chemotypes[J]. Glycobiology, 2009, 19(12):1492-1502.
[30]
Varki NM, Varki A. Diversity in cell surface sialic acid presentations:implications for biology and disease[J]. Laboratory Investigation, 2007, 87(9):851-857.
[31]
Blix F, Gottschalk A, Klenk E. Proposed nomenclature in the field of neuraminic and sialic acids[J]. Nature, 1957, 179:1088.
[32]
Schaue R, Stoll S, Reuter G. Differences in the amount of N-acetyl-and N-glycoloyl-neuraminic acid, as well as O-acylated sialic acids, of fetal and adult bovine tissues[J]. Carbohydrate Research, 1991, 213:353-359.
[33]
Furuhata K. Chemistry of N-acetylneuraminic acid(Neu5Ac)[J]. Trends Glycosci Glycotechnol, 2004, 16:143-169.
[34]
Chan TH, Lee MC. Indium-mediated coupling of α-(Bromomethyl) acrylic acid with carbonyl compounds in aqueous media. concise syntheses of(+)-3-Deoxy-D-glycero-D-galacto- nonulosonic acid and N-acetylneuraminic acid[J]. The Journal of Organic Chemistry, 1995, 60(13):4228-4232.
[35]
Danishefsky SJ, DeNinno MP, Chen SH. Stereoselective total synth-eses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-D-manno-2-octulosonic acid. A new and stereos-pecific approach to sialo and 3-deoxy-D-manno-2-octulosonic acid conjugates[J]. Journal of the American Chemical Society, 1988, 110(12):3929-3940.
[36]
Haag-Zeino B, Schmidt RR. De novo synthesis of carbohydrates and related natural products, 34. Synthesis of N-acetyl-β-D-neuraminic acid derivatives via inverse-type hetero-Diels-Alder reaction[J]. Liebigs Annalen der Chemie, 1990, 1990(12):1197-1203.
Plumbridge J, Vimr E. Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli[J]. Journal of bacteriology, 1999, 181(1):47-54.
[39]
[30 Vimr ER, Kalivoda KA, Deszo EL, et al. Diversity of microbial sialic acid metabolism[J]. Microbiology and Molecular Biology Reviews, 2004, 68(1):132-153.
[40]
Sun W, Ji W, Li N, et al. Construction and expression of a polycistronic plasmid encoding N-acetylglucosamine 2-epimerase and N-acetylneuraminic acid lyase simultaneously for production of N-acetylneuraminic acid[J]. Bioresource Technology, 2013, 130:23-29.
[41]
a promising biocatalyst[J]. Applied Microbiology and Biotechnology, 2008, 79(6):963-970.
[42]
North RA, Kessans SA, Atkinson SC, et al. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus[J]. Acta Crystallogr Sect F, 2013, 69(3):306-312.
[43]
Sola-Carvajal A, Sánchez-Carrón G, García-García MI, et al. Properties of BoAGE2, a second N-acetyl-D-glucosamine 2-epimerase from Bacteroides ovatus ATCC 8483[J]. Biochimie, 2012, 94(1):222-230.
[44]
Tabata K, Koizumi S, Endo T, et al. Production of N-acetyl-D-neuraminic acid by coupling bacteria expressing N-acetyl- D-glucosamine 2-epimerase and N-acetyl-D-neuraminic acid synthetase[J]. Enzyme and Microbial Technology, 2002, 30(3):327-333.
[45]
Hao J, Ma C, Gao C, et al. Pseudomonas stutzeri as a novel biocatalyst for pyruvate production from DL-lactate[J]. Biotechnology Letters, 2007, 29(1):105-110.
[46]
Zhang YN, Tao F, Du MF, et al. An efficient method for N-acetyl-D-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system[J]. Applied Microbiology and Biotechnology, 2010, 86(2):481-489.
[47]
Tao F, Zhang YN, Ma CQ, et al. One-pot bio-synthesis:N-acetyl-D-neuraminic acid production by a powerful engineered whole-cell catalyst[J]. Scientific Reports, 2011, 1:142.
[48]
Lin BX, Zhang ZJ, Liu WF, et al. Enhanced production of N-acetyl-D-neuraminic acid by multi-approach whole-cell biocatalyst[J]. Applied Microbiology and Biotechnology, 2013, 97(11):4775-4784.