Drider D, Rebuffat S. Prokaryotic antimicrobial peptides:from genes to applications[M]. Springer New York Dordrecht Heidelberg London, 2011.
[2]
Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J Biotech-nol, 2005, 115(2):113-128.
[3]
Li P, Xu ZN, Fang XM, et al. Preferential codons enhancing expres-sion level of human beta- defensin-2 in recombinant Escherichia coli[J]. Protein & Peptide Letters, 2004, 11(4):229-344.
[4]
Wang A, Su Y, Wang S, et al. High efficiency preparation of bioactive human alpha-defensin 6 in Escherichia coli Origami(DE3)pLysS by soluble fusion expression[J]. Appl Microbiol Biotechnol, 2010, 87(5):1935-1942.
[5]
Zhong Z, Xu Z, Peng L, et al. Tandem repeat mhBD2 gene enhance the soluble fusion expression of hBD2 in Escherichia coli[J]. Appl Microbiol Biotechnol, 2006, 71(5):661-667.
[6]
Li YF. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli[J]. Biotechnol Appl Biochem, 2009, 54(1):1-9.
[7]
Peroutka IRJ, Orcutt SJ, Strickler JE, et al. SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes[J]. Methods Mol Biol, 2011, 705:15-30.
[8]
Xu XX, Jin FL, Yu XQ, et al. High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12)with an ubiquitin fusion partner in Escherichia coli[J]. Protein Expr Purif, 2007, 55(1):175-182.
[9]
Bang SK, Kang CS, Han MD, et al. Expression of recombinant hybrid peptide hinnavin II/α-melanocyte-stimulating hormone in Escherichia coli:purification and characterization[J]. J Microbiol, 2010, 48(1):24-29.
Wu MZ, Zhao L, Zhu L, et al. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli[J]. Protein Expr Purif, 2013, 1(88):7-12.
[13]
Mierau I, Olieman K, Mond J, et al. Optimization of the Lactococcus lactis nisin controlled gene expression system NICE for industrial applications[J]. Microb Cell Fact, 2005, 4:16.
[14]
Rodríguez JM, Martínez MI, Horn N, et al. Heterologous production of bacteriocins by lactic acid bacteria[J]. Int J Food Microbiol, 2003, 80(2):101-116.
[15]
Mathiesen G, Sveen A, Piard JC, et al. Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides[J]. J Appl Microbiol, 2008, 105(1):215-226.
[16]
Klaenhammer T, Altermann E, Arigoni F, et al. Discovering lactic acid bacteria by genomics[J]. Antonie Van Leeuwenhoek, 2002, 82(1-4):29-58.
[17]
van de Guchte M, van der Vossen JM, Kok J, et al. Construction of a lactococcal expression vector:expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis[J]. Appl Environ Microbiol, 1989, 55(1):224-228.
[18]
Martín M, Gutiérrez J, Criado R, et al. Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2007, 76(3):667-675.
[19]
Zhou XX, Li WF, Ma GX, et al. The nisin-controlled gene expres-sion system:construction, application and improvements[J]. Biotechnol Adv, 2006, 24(3):285-295.
[20]
Horn N, Fernandez A, Dodd HM, et al. Nisin-controlled production of pediocin PA-1 and colicin V in nisin- and non-nisin-producing Lactococcus lactis strains[J]. Appl Environ Microbiol, 2004, 70(8):5030-5032.
[21]
Hickey RM, Twomey DP, Ross RP, et al. Potential of the enterocin regulatory system to control expression of heterologous genes in Enterococcus[J]. J Appl Microbiol, 2003, 95(2):390-397.
[22]
S?rvig E, Gronqvist S, Naterstad K, et al. Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum[J]. FEMS Microbiol Lett, 2003, 229(1):119-126.
[23]
Natale P, Brüsser T, Driessen J. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane:distinct translocases and mechanisms[J]. Biophys Acta, 2008, 1778(9):1735-1756.
[24]
Le Loir Y, Nouaille S, Commissaire J, et al. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis[J].Appl Environ Microbiol, 2001, 67(9):4119-4127.
[25]
Borrero J, Jiménez JJ, Gútiez L, et al. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria[J]. J Biotechnol, 2011, 156(1):76-86.
O''Keeffe T, Hill C, Ross RP. Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146[J]. Appl Environ Microb, 1999, 65:1506-1515.
[28]
Kuipers OP, Beerthuyzen MM, de Ruyter PG, et al. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction[J]. J Biol Chem, 1995, 270:27299-27304.
Parachin NS, Mulder KC, Viana AAB, et al. Expression systems for heterologous production of antimicrobial peptides[J]. Peptides, 2012, 38(2):446-456.
[31]
Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5):494-500.
[32]
Huang L, Ching CB, Jiang R, et al. Production of bioactive human beta-defensin 5 and 6 in Escherichia coli by soluble fusion expression[J]. Protein Expr Purif, 2008, 61(2):168-174.
[33]
Wang Q, Zhu F, Xin Y, et al. Expression and purification of antimicrobial peptide buforin IIb in Escherichia coli[J]. Biotechnol Lett, 2011, 33(11):2121-2126.
Rao X, Hu J, Li S, et al. Design and expression of peptide antibiotic hPAB-beta as tandem multimers in Escherichia coli[J]. Peptides, 2005, 26(5):721-729.
[36]
Li YF. Recombinant production of antimicrobial peptides in Escherichia coli:a review[J]. Protein Expr Purif, 2011, 80(2):260-267.
[37]
Fink J, Merrifield RB, Boman A, et al. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity[J]. J Biol Chem, 1989, 264(11):6260-6267.
[38]
Feng X, Liu C, Guo J, et al. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33[J]. Appl Microbiol Biotechnol, 2012, 95(5):1191-1198.
[39]
Tapia E, Montes C, Rebufel C, et al. Expression of an optimized Argopecten purpuratus antimicrobial peptide in E. coli and evaluation of the purified recombinant protein by in vitro challenges against important plant fungi[J]. Peptides, 2011, 9(32):1909-1916.
Chen R. Bacterial expression systems for recombinant protein production:E. coli and beyond[J]. Biotech Advances, 2012, 30(5):1102-1107.
[42]
Christiaens H, Leer RJ, Pouwels PH. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay[J]. Appl Environ Microbiol, 1992, 58(12):3792-3798.
[43]
Bolotin A, Wincker P, Mauger S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403[J]. Genome Res, 2001, 11(5):731-753.
[44]
Mathiesen G, Naml?s HM, Ris?en PA, et al. Use of bacteriocin promoters for gene expression in Lactobacillus plantarum C11[J]. J Appl Microbiol, 2004, 96(4):819-827.
[45]
S?rvig E, Mathiesen G, Naterstad K, et al. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors[J]. Microbiology, 2005, 151, 2439-2449.
[46]
Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria[J]. Biotech J, 2011, 6(9):1147-1161.
[47]
Gutiérrez J, Larsen R, Cintas LM, et al. High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2006, 72(1):41-51.
[48]
Jiménez JJ, Borrero J, Diep DB, et al. Cloning, production, and functional expression of the bacteriocin sakacin A(SakA)and two SakA-derived chimeras in lactic acid bacteria(LAB)and the yeasts Pichia pastoris and Kluyveromyces lactis[J]. J Ind Microbiol Biotechnol, 2013, 40(9):977-993.
[49]
Sun C, Chen XZ, Huan LD, et al. Fusion expression of a peptide antibiotic-apidaecin gene in Lactococcus lactis[J]. Chin J Biotechnol, 2001, 17(1):20-23.
[50]
Renye Jr JA, Somkuti GA, Garabal JI, et al. Heterologous production of pediocin for the control of Listeria monocytogenes in dairy foods[J]. Food Control, 2011, 22(12):1887-1892.
[51]
Axelsson L, Lindstad G, Naterstad K. Development of an inducible gene expression system for Lactobacillus sakei[J]. Lett Appl Microbiol, 2003, 37(2):115-120.
[52]
Mathiesen G, S?rvig E, Blatny J, et al. High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter[J]. Lett Appl Microbiol, 2004, 39(2):137-143.
[53]
Driessen AJM, Nouwen N. Protein translocation across the bacterial cytoplasmic membrane[J]. Annu Rev Biochem, 2008, 77:643-667.
[54]
van Asseldonk M, de Vos WM, Simons G. Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha amylase[J]. Mol Gen Genet, 1993, 240(3):428-434.
[55]
Nouaille S, Ribeiro LA, Miyoshi A, et al. Heterologous protein production and delivery systems for Lactococcus lactis[J]. Genet Mol Res, 2003, 2(1):102-111.
Martínez, JM, Kok J, Sanders JW, et al. Heterologous co-production of enterocin A and pediocin PA-1 by Lactococcus lactis:detection by specific peptide-directed antibodies[J]. Appl Environ Microb, 2000, 66:3543-3549.
[58]
Fink J, Merrifield RB, Boman A, et al. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity[J]. J Biol Chem, 1989, 264:6260-6267.
[59]
Brede DA, Faye T, Stierli MP, et al. Heterologous production of antimicrobial peptides in Propionibacterium freudenreichii[J].Appl Environ Microb, 2005, 71:8077-8084.