Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229):551-556.
[3]
Bouché N, Fromm H, GABA in plants:just a metabolite?[J]. Trends in Plant Science, 2004, 9(3):110-115.
[4]
Clark SM, Di Leo R, Dhanoa PK, et al. Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate[J]. Journal of Experimental Botany, 2009, 60(6):1743-1757.
[5]
Renault H, Roussel V, El Amrani A, et al. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance[J]. BMC Plant Biology, 2010, 10(1):20.
[6]
Deleu C, Faes P, Niogret MF, et al. Effects of the inhibitor of the gamma-aminobutyrate-transaminase, vinyl-gamma-aminobutyrate, on development and nitrogen metabolism in Brassica napus seedl-ings[J]. Plant Physiology and Biochemistry, 2013, 64:60-69.
Akihiro T, Koike S, Tani R, et al. Biochemical mechanism on GABA accumulation during fruit development in tomato[J]. Plant and Cell Physiology, 2008, 49(9):1378-1389.
[9]
Van Cauwenberghe OR, Shelp BJ, Biochemical characterization of partially purified gaba:pyruvate transaminase from Nicotiana tabacum[J]. Phytochemistry, 1999, 52(4):575-581.
[10]
Allan WL, Simpson JP, Clark SM, et al. γ-Hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress:putative regulation by redox balance and glyoxylate reductase isoforms[J]. Journal of Experimental Botany, 2008, 59(9):2555-2564.
[11]
Morishige DT, Klein PE, Hilley JL, et al. Digital genotyping of sorg-hum-a diverse plant species with a large repeat-rich genome[J]. BMC Genomics, 2013, 14(1):448.
[12]
Shelp BJ, Mullen RT, Waller JC. Compartmentation of GABA metabolism raises intriguing questions[J]. Trends in Plant Science, 2012, 17(2):57-59.
[13]
Shelp BJ, Bozzo GG, Zarei A, et al. Strategies and tools for studying the metabolism and function of γ-aminobutyrate in plants. II. Integrated analysis[J]. Botany, 2012, 90(9):781-793.
[14]
Fait A, Fromm H, Walter D, et al. Highway or byway:the metabolic role of the GABA shunt in plants[J]. Trends in Plant Science, 2008, 13(1):14-19.
[15]
Clark SM, Di Leo R, Van Cauwenberghe OR, et al. Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate[J]. Journal of Experimental Botany, 2009, 60(11):3255-3267.
[16]
Shimajiri Y, Ozaki K, Kainou K, et al. Differential subcellular loca-lization, enzymatic properties and expression patterns of gamma-am-inobutyric acid transaminases(GABA-Ts)in rice(Oryza sativa)[J]. Journal of Plant Physiology, 2013, 170(2):196-201.
[17]
Koike S, Matsukura C, Takayama M, et al. Suppression of gamma-aminobutyric acid(GABA)transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato(Solanum lycopersicum L.)[J]. Plant and Cell Physiology, 2013, 54(5):793-807.
[18]
Palanivelu R, Brass L, Edlund AF, et al. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels[J]. Cell, 2003, 114(1):47-59.
[19]
Patnaik PR. Investigation of induction effect on the steady state performance of a continuous fermentation for recombinant β-ga1actosidase[J]. Process Biochemistry, 2001, 36(11):1069-1074.
[20]
Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid[J]. Trends in Plant Science, 1999, 4(11):446-452.
[21]
Hyun TK, Eom SH, Jeun YC, et al. Identification of glutamate decarboxylases as a γ-aminobutyric acid(GABA)biosynthetic enzyme in soybean[J]. Industrial Crops and Products, 2013, 49:864-870.
[22]
Renault H. Fiat lux!:phylogeny and Bioinformatics shed light on GABA functions in plants[J]. Plant Signaling and Behavior, 2013, 8(6):e24274.