全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

重组粪肠球菌gshF基因对副干酪乳杆菌(Lactobacillusparacasei)L14抗逆性能的影响

, PP. 149-156

Keywords: 副干酪乳杆菌,粪肠球菌,谷胱甘肽合成酶,gshF,抗逆性

Full-Text   Cite this paper   Add to My Lib

Abstract:

乳酸菌作为重要的食品工业微生物,其在工业生产应用过程中会受到多种非生物胁迫。已有研究表明部分乳酸菌可以吸收培养基中或是自身合成谷胱甘肽(Glutathione,GSH),提高对各种胁迫的抵抗作用。克隆了粪肠球菌(Enterococcusfaecalis)中的谷胱甘肽合成酶基因gshF,通过构建乳杆菌重组表达质粒,实现了gshF在副干酪乳杆菌(Lactobacillusparacasei)L14菌株中的异源表达。通过对重组gshF-副干酪乳杆菌阳性菌株的抗逆性性测定,结果表明在过氧化氢、酸、冻干脱水和渗透等胁迫条件下,gshF重组菌株的存活率与对照菌株相比均有显著提高。

References

[1]  Copley SD, Dhillon JK. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes[J]. Genome Biol, 2002, 3:1-16.
[2]  Fahey RC, Brown WC, Adams WB, Worsham MB. Occurrence of glutathione in bacteria[J]. J Bacteriol, 1978, 133:1126-1129.
[3]  Carmel-Harel O, Storz G. Roles of the glutathione-and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress[J]. Annu Rev Microbiol, 2000, 54:439-461.
[4]  Moore WR, Anderson ME, Meister A, et al. Increased capacity for glutathione synthesis enhances resistance to radiation in Escherichia coli:a possible model for mammalian cell protection[J]. P Natl Acad Sci USA, 1989, 86:1461-1464.
[5]  Smirnova GV, Krasnykh TA, Oktyabrsky ON. Role of glutathione in the response of Escherichia coli to osmotic stress[J]. Biochemistry(Moscow), 2001, 66:973-978.
[6]  Janowiak BE, Griffith OW. Glutathione synthesis in Streptococcus agalactiae[J]. J Biol Chem, 2005, 280:11829-11839.
[7]  Fahey RC, Brown WC, Adams WB, Worsham MB. Occurrence of glutathione in bacteria[J]. J Bacteriol, 1978, 133:1126-1129.
[8]  王静波, 任发政, 郑丽敏, 陈尚武.含有干酪乳杆菌的再制干酪的特性分析[J].食品科技, 2009, 12:71-75.
[9]  冯秀娟, 左方雷, 陈丽丽, 陈尚武.乳酸菌耐酸耐胆盐分析与胆盐水解酶研究[J].中国食品学报, 2013, 11:139-147.
[10]  陈喜玲, 魏艳杰, 左芳雷, 等.合成海藻糖乳酸菌重组菌株的构建及其抗逆性评价[J].生物技术, 2013, 23(2):29-34.
[11]  Fu RY, Bongers RS, van Swam II, et al. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host[J]. Metab Eng, 2006, 8:662-671.
[12]  Aukrust TW, Brurberg MB, Nes IF. Transformation of Lactobacillus by electroporation[M]//Nickowff JA. Electroporation Protocols for Microorganisms, Humana Prese Inc., 1995:201-208.
[13]  Serror P, Sasaki T, Ehrlich SD, Maguin E. Electro transformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with various plasmids[J]. Appl Environ Microbiol, 2002, 68:46-52.
[14]  Smid EJ, Hugenholtz J. Functional genomics for food fermentation processes[J]. Annu Rev Food Sci Technol, 2010, 1:497-519.
[15]  Kim JE, Eom HJ, Kim Y, et al. Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione[J]. Biotechnol Lett, 2012, 34:683-687.
[16]  Zhang YH, Zhang YP, Zhu Y, et al. Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress[J]. Appl Environ Microbiol, 2010, 76:3177-3186.
[17]  Zhang J, Du GC, Zhang Y, et al. Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment[J]. Appl Environ Microbiol, 2010, 76:2989-2996.
[18]  Lee K, Pi K, Kim EB, et al. Glutathione-mediated response to acid stress in the probiotic bacterium, Lactobacillus salivarius[J]. Biotechnol Lett, 2010, 32:969-972.
[19]  Lee K, Kim HJ, Rho BS, et al. Effect of glutathione on growth of the probiotic bacterium Lactobacillus reuteri[J]. Biochemistry-Moscow, 2011, 76:423-426.
[20]  Zhang J, Fu RY, Hugenholtz J, et al. Glutathione protects Lactococcus lactis against acid stress[J]. Appl Environ Microbiol, 2007, 73:5268-5275.
[21]  Wu G, Fang YZ, Yang S, et al. Glutathione metabolism and its implications for health[J]. J Nutr, 2004, 134:489-492.
[22]  Yoon YH, Byun JR. Occurrence of glutathione sulphydryl(GSH)and antioxidant activities in probiotic Lactobacillus spp.[J]. Asian-Aust J Anim Sci, 2004, 17:1582-1585.
[23]  Meury J, Kepes A. Glutathione and the gated potassium channels of Escherichia coli[J]. EMBO J, 1982, 1:339-343.
[24]  Lee KB, Pi KB, Kim EB, et al. Glutathione-mediated response to acid stress in the probiotic bacterium, Lactobacillus salivarius[J]. Biotechnol Lett, 2010, 32:969-972.
[25]  Zhang J, Fu RY, Hugenholtz J, et al. Glutathione protects Lactococcus lactis against acid stress[J]. Appl Environ Microbiol 2007, 73:5268-5275.
[26]  Kim JE, Eom HJ, Kim YJ. Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione[J]. Biotechnol Lett, 2012, 34:683-687.
[27]  ZhangYH, ZhangYP, ZhuY, et al. Proteomic analyses to reveal the protective role of glutathione in resistance of?Lactococcus lactis?to osmotic stress[J]. Appl Environ Microbiol, 2010, 76:103177-3186.
[28]  Zhang J, Du GC, Zhang Y, et al. Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment[J]. Appl Environ Microbiol, 2010, 76:2989-2996.
[29]  Helbig K, Bleuel C, Krauss GJ, Nies DH. Glutathione and transition-metal homeostasis in Escherichia coli[J]. J Bacteriol, 2008, 190:5431-5438.
[30]  Janowiak BE, Griffith OW. Glutathione synthesis in Streptococcus agalactiae[J]. The Journalof Chemistry, 2005, 12:11829-11839.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133