Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel [J]. Applied Energy, 2009, 86:2273-2282.
[2]
Hahn-H?gerdal B, Galbe M, Gorwa-Grauslund MF, et al. Bio-ethanol-the fuel of tomorrow from the residues of today[J]. Trends in Biotechnology, 2006, 24(12):549-556.
Soni PL, Sharma H, Dun D, et al. Physicochemical properties of Quercus leucotrichophora(Oak)starch [J]. Starch/St?rke, 1993, 45(4):127-130.
[11]
Stevenson DG, Jane JL, Inglett GE. Physicochemical properties of pin oak(Quercus palustris Muenchh.)acorn starch [J]. Starch/St?rke, 2006, 58(11):553-560.
[12]
Derory J, Léger P, Garcia V, et al. Transcriptome analysis of bud burst in sessile oak(Quercus petraea)[J]. New Phytologist, 2006, 170(4):723-738.
[13]
Lesur I, Durand J, Sebastiani F, et al. A sample view of the pedunculate oak(Quercus robur)genome from the sequencing of hypomethylated and random genomic libraries [J]. Tree Genetics & Genomes, 2011, 7(6):1277-1285.
[14]
Ueno S, Le Provost G, Léger V, et al. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species:oak [J]. BMC Genomics, 2010, 11:650.
Huang LL, Yang X, Sun P, et al. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers [J]. PloS One, 2012, 7(6):e38653.
[18]
Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis [J]. Nature Protocols, 2013, 8(8):1494-1512.
[19]
Wang R, Xu S, et al. De novo sequence assembly and characteriza-tion of Lycoris aurea transcriptome using GS FLX Titanium platform of 454 pyrosequencing [J]. PloS One, 2013, 8(4):e60449.
[20]
Tao X, Fang Y, Xiao Y, et al. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed(Landoltia punctata)under nutrient starvation [J]. Biotechnology for Biofuels, 2013, 6(1):72.
[21]
Kaminski KP, Petersen AH, S?nderk?r M, et al. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars [J]. PloS One, 2012, 7(12):e51248.
[22]
Shu S, Chen B, et al. De novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids [J]. PloS One, 2013, 8(8):e71350.
[23]
Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus [J]. BMC Genomics, 2012, 13:266.
[24]
Kole, Chittaranjan. Fagaceae Trees. //In genome mapping and molecular breeding in plants[M] . Springer, 2007, 7:161-184.
[25]
Li SW, Yang H, Liu YF, et al. Transcriptome and gene expression analysis of the rice leaf folder, Cnaphalocrosis medinalis [J]. PloS One, 2012, 7(11):e47401.
[26]
O’Malley DM, McKeand SE. Marker assisted selection for breeding value in forest trees [J]. Forest Genetics, 1994, 1:207-218.
[27]
Neale DB, Kremer A. Forest tree genomics:growing resources and applications [J]. Nature Reviews Genetics, 2011, 12:111-122.