全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

基于ICA的脑电信号P300少次自动提取

DOI: 10.3969/j.issn.0372-2112.2012.06.032, PP. 1257-1262

Keywords: 独立分量分析,P300,脑电,固定时间模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于InfomaxICA少次自动提取脑电信号P300成分的方法.为了提高ICA分解的有效性,对原始数据中的自发脑电信号和P300成分进行了均衡.混合信号经过ICA分解后,根据IC的固定时间模式的标准差来自动选择P300成分IC,最后重构得到P300成分.实验结果是:利用6试次实验数据经过本文方法处理后能自动得到P300成分,与29试次平均结果(标准信号)相比,它们之间的Pearson相关系数达0.9035,而6试次实验数据平均的结果与标准信号之间的Pearson相关系数为0.5105.结果表明,该方法能有效的获取P300成分,同时增强了P300成分少次提取的客观性.

References

[1]  陶彩林,邹凌,马正华,周仁来.诱发电位单次提取技术的研究进展[J].生物医学工程学杂志,2009,26(5):1158-1161. TAO Cai-lin,LING Zou,MA Zheng-hua,ZHOU Ren-lai.Progress in single extraction of evoked potential[J].Journal of Biomedical Engineering,2009,26(5):1158-1161.(in Chinese)
[2]  Rahman MZU,Shaik RA,Reddy DVRK.Cancellation of artifacts in ECG signals using block adaptive filtering techniques[J].Software Tools and Algorithms for Biological Systems,2011,696:505-513.
[3]  Feng Zhen,Zhang Suo-di.Intelligent diagnosis on ERP performance by using classified wavelet neural network[J].Computer Engineering and Applications,2010,46(4):243-244,248.
[4]  罗志增,李文国.基于小波变换和盲信号分离的多通道肌电信号处理方法[J].电子学报,2009,37(4):823-827. LUO Zhi-zeng,LI Wen-guo.A method of multi-channel EMG disposal based on wavelet transform and blind signal separation[J].Acta Electronica Sinica,2009,37(4):823-827.(in Chinese)
[5]  万柏坤,朱欣,杨春梅,高扬.ICA去除EEG中眼动伪差和工频干扰方法研究[J].电子学报,2003,31(10):1571-1574. WAN Bai-kun,ZHU Xin,YANG Chun-mei,GAO Yang.Study on applying independent component analysis to remove blink artifacts and power noise in EEG[J].Acta Electronica Sinica,2003,31(10):1571-1574.(in Chinese)
[6]  张宇,张建华,王行愚,等.基于Fast ICA 的P300 电位快速提取方法[J].华东理工大学学报(自然科学版),2009,35(5):750-755. ZHANG Yu,ZHANG Jian-hua,WANG Xing-yu,et al.A fast ICA-based approach to extracting P300 potential[J].Journal of East China University of Science and Technology(Natural Science Edition),2009,35(5):750-755.(in Chinese)
[7]  Darshan Iyer,George Zouridakis.Single-trial evoked potential estimation:Comparison between independent component analysis and wavelet denoising[J].Clinical Neurophysiology,2007,118:495-504.
[8]  Hung Chih-I,Yang Yea-Ru,Wang Ray-Yau,et al.Enhancement of signal-to-noise ratio of peroneal somatosensory evoked potential using independent component analysis and time-frequency template[J].Journal of Medical and Biological Engineering,2008,28(3):161-166.
[9]  陈洪波,陈真诚,汤井田.基于ICA的同场景多幅图像中的强噪声抑制[J].电子科技大学学报(自然科学版),2010,39(2):209-213. CHEN Hong-bo,CHEN Zhen-cheng,TANG Jing-tian.Strong noise pollution control in multiple copy images[J].Journal of the University of Electronic Science and Technology of China,2010,39(2):209-213.(in Chinese)
[10]  Lee TW,et al.Independent component analysis using an extened infomax algorithm for mixed Subgaussian and Supergaussian sources[J].Neural Computation,1999,11(2):409-33.
[11]  张和发,李立萍,杨小牛,李万春.一种适用于微弱信号盲提取的白化方法[J].电子学报,2011,39(6):1297-1301. ZHANG He-fa,LI Li-ping,YANG Xiao-niu,LI Wan-chun.An efficient whitening method for weak signal extraction[J].Acta Electronica Sinica,2011,39(6):1297-1301.(in Chinese)
[12]  S Aviyente,E M Bernat,S M Malone,et al.Time-frequency data reduction for event related potentials:Combining principal component analysis and matching pursuit [J].EURASIP Journal on Advances in Signal Processing,2010,11(55):289-571.
[13]  Jan R Wessel,Markus Ullsperger.Selection of independent components representing event-related brain potentials:A data-driven approach for greater objectivity[J].NeuroImage,2011,54:2105-2115.
[14]  Ling Zou,Suolin Duan,Zhenghua ma,Changchun Yang.Single-trial event related potentials extraction by using independent component analysis .2nd International Conference on Biomedical Engineering and Informatics (BMEI’09) .Tianjin:IEEE Press,2009.1-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133