全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2008 

基于随机子空间的半监督协同训练算法

, PP. 60-65

Keywords: 半监督学习,随机子空间,随机判别,协同训练,多视图,RASCO

Full-Text   Cite this paper   Add to My Lib

Abstract:

半监督学习是近年来的一个研究热点.协同训练(co-training)是利用未标记数据来提高传统监督学习性能的一种半监督学习范式.本文提出一种基于随机子空间的协同训练算法(RAndomSubspaceCO-training,简称为RAS-CO).该算法探讨多视图的协同训练.用随机判别的理论分析了算法的分类精度和泛化能力.讨论了随机子空间的维数和个数对分类性能的影响.在UCI数据集上的实验结果表明,与其它同类算法相比,RASCO算法有较好的性能.

References

[1]  Chapelle O,Scholkopf B,Zien A.Semi-supervised learning[M].Cambridge:MIT Press,2006.
[2]  Szummer M,Jaakkola T.Partially labeled classification with markov random walks[A].Advances in Neural Information Processing Systems 14[C].Cambridge,MA:MIT Press,2002.945-952.
[3]  Nigam K,McCallum A K,Thrun S,Mitchell T.Text classification from labeled and unlabeled documents using EM[J].Ma chine Learning,2000,39(2-3):103-134.
[4]  Dasgupta S,Littman M,McAllester D.PAC generalization bounds for co-training[A].Advances in Neural Information Processing Systems 14[C].Cambridge,MA,MIT Press,2002.375-382.
[5]  Goldman S,Zhou Y.Enhancing supervised learning with unlabeled data[A].Proceedings of the 17th International Conference on Machine Learning[C].San Francisco,CA,2000.327-334.
[6]  Li M,Zhou Z H.Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples[J].IEEE Transactions on Systems,Man and Cybernetics-Part A,2007,37(6):1088-1098.
[7]  Collins M,Singer Y.Unsupervised models for named entity classifications[A].Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural language Processing and Very Large Corpora[C].College Park,MD,1999.100-110.
[8]  Ando R,Zhang T.A framework for learning predictive structures from multiple tasks and unlabeled data[J].Journal of Machine Learning Research,2005,6,1817-1853.
[9]  Muslea I,Minton S,Knoblock C A.Active learning with multiple views[J].Journal of Artificial Intelligence Research,2006,(27):203-233.
[10]  周志华.半监督学习中的协同训练风范[A].周志华,王珏主编.机器学习及其应用[M].2007,北京:清华大学出版社,2007.259-275.
[11]  Kleinberg E M.Stochastic discrimination[J].Annals of Mathematics and Artificial Intelligence,1990,1(1-4):207-239.
[12]  Ho T K.The random subspace method for constructing decision forests[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):832-844.
[13]  D''Alche-Buc F,Grandvalet Y,Ambroise C.Semi-supervised marginboost[A].Advances in Neural Information Processing Systems 14[C].MIT Press,2002.553-560.
[14]  Bennett K P,Demiriz A,Maclin R.Exploiting unlabeled data in ensemble methods[A].Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Minhag[C].Edmonton,Canada,2002.289-296.
[15]  Zhu Xiao-Jin.Semi-supervised Learning with Graphs[D].Carnegie Melon University,doctoral thesis,2005.
[16]  Blum A,Chawla S.Leaming from labeled and unlabeled data using graph mincuts[A].Proceedings of the 18th International Conference on Machine Learning[C].Williamston,MA,2001.19-26.
[17]  Joachims T.Transductive inference for text classification using support vector machines[A].Proceedings of the 16th International Conference on Machine Learnlng[C].New York,USA,1999.200-209.
[18]  Tong S,Koller D.Support vector machine active learning with applications to text classification[A].Proceedings of the 17th International Conference on Machine Learning[C].Stanford,US,2000.999-1006.
[19]  Cozman F G,Cohen I,Cirelo M C.Semi-supervised learning of mixture model[A].Proceedings of the 20th International Conference on Machine Learning[C].citeseer,2003.99-106.
[20]  Blum A,Mitchell T.Combining labeled and unlabeled data with co-training[A].Proceedings of the 11th Annual Conference on Computational Learning Theory[C].Madison,Wl,1998.92-100.
[21]  Balcan M F,Blum A.A PAC-style model for learning from labeled and unlabeled data[A].Proceedings of the 18th Annual Conference on Cemputational Learning Theory[C].citeseer,2005.111-126.
[22]  Zhou Z H,Li M.Tri-training:exploiting unlabeled data using three classifiers[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(11):1529-1541.
[23]  Nigam K,Ghani R.Analyzing the effectiveness and applicability of co-training[A].Proceedings of Information and Knowledge management[C].New York,NY,USA:ACM,2000.86-93.
[24]  Breiman U,Scheffer T.Co-EM support vector learning[A].Proceedings of the 21st International Conference on Machine Learning[C].citeseer,2004.121-128.
[25]  Abney S.Bootstrapping[A].Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C].Philadelphia,PA,2002.360-367.
[26]  Johnson R,Zhang T.Two-view feature generation model for semi-supervised learning[A].Proceedings of the 24th International Conference on Machine Learning[C].New York,NY,USA:ACM,2007.25-32.
[27]  邓超,郭茅祖.基于自适应数据剪辑策略的Tri-training算法[J].计算机学报,2007,30(8):1213-1226.Deng Chao,Guo Mao-zu.ADE-Tri-training:Tri-training with adaptive data editing[J].Chinese Journal of Computers,2007,30(8):1213-1226.(in Chinese)
[28]  Kleinberg E M.An overtraining-resistant stochastic modeling method for pattern recognition[J].Annals of Statistics,1996,4(6):2319-2349.
[29]  Kleinberg E M.On the algorithmic implementation of stochastic discrimination[J].IEEE Transactions on Pattem Analysis and Machine Intelligence,2000,22(5):473-490.
[30]  Blake C,Keogh E,Merz C J.UCI repository of machine learning databases[DB/OL].http://www,its.uci.edu/-mlearn/MLRepository,html,1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133