全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2013 

一种基于动态边界的粒子群优化算法

DOI: 10.3969/j.issn.0372-2112.2013.05.006, PP. 865-870

Keywords: 粒子群优化,停滞现象,早熟收敛,动态边界

Full-Text   Cite this paper   Add to My Lib

Abstract:

2007年提出的标准粒子群优化算法(PSO-2007)在进化的后期容易出现停滞现象而导致早熟收敛,为此本文提出了一种基于动态边界的粒子群优化算法(DBPSO).该算法根据停滞期粒子运动的特点,将边界动态调整策略引入到PSO-2007中,通过跟踪粒子飞行位置的分布动态调整搜索空间的边界,引导粒子在更有效的区域内进行搜索,从而减轻早熟收敛,提高收敛精度.典型测试函数的求解实验结果表明DBPSO是可行而有效的.

References

[1]  Modares H,Alfi A,Mohammad BB.Parameter estimation of bilinear systems based on an adaptive particle swarm optimization[J].Engineering Applications of Artificial Intelligence,2010,23(7):1105-1111.
[2]  Shi Y,Eberchart R.A modified particle swarm optimizer .Proceedings of IEEE Congress on Evolutionary Computation.Anchorage .New York:IEEE Press,1998.69-73.
[3]  Clerc M,Kennedy J.The particle swarm:Explosion,stability,and convergence in multidimensional complex space[J].IEEE Trans on Evolutionary Computation,2002,6(1):58-73.
[4]  Chen D,Wang GF,Chen ZY.The inertia weight self-adapting in PSO .Proceedings of the 7th World Congress on Intelligent Control and Automation .New York:IEEE Press,2008.5313-5316.
[5]  James Kennedy,Rui Mendes.Neighborhood topologies in fully informed and best-of-neighborhood particle swarms[J].IEEE Trans on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2006,36(4):515-519.
[6]  Takeshi Korenaga,Nobuhiko Kondo,Toshiharu Hatanaka,et al.Topology-based personal selection in multi-objective particle swarm optimization .Proceedings of SICE Annual Conf .Tokyo,2008.3465-3469.
[7]  倪庆剑,张志政,王蓁蓁,等.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报,2009,20(2):339-349. Ni QJ,Zhang ZZ,Wang ZZ,et al.Dynamic probabilistic particle swarm optimization based on varying multi-cluster structure[J].Journal of Software,2009,20(2):339-349.(in Chinese)
[8]  Chen MR,Li X,Zhang X,et al.A novel particle swarm optimizer hybridized with extremal optimization[J].Applied Soft Computing,2010,10(2):367-373.
[9]  M Clerc.From theory to practice in particle swarm optimization .Handbook of swarm intelligence:concepts,principles and applications .Berlin Heidelgerg:Springer,2011.3-36.
[10]  M Clerc.Standard Particle Swarm Optimization .http://clerc.maurice.free.fr/pso/.2011-07-12.
[11]  J Kennedy,RC Eberhart.Particle swarm optimization .Proceedings of IEEE International Conference on Neural Networks .New York:IEEE Press,1995.1942-1948.
[12]  王文彬,孙其博,赵新超,等.基于非均衡变异离散粒子群算法的QoS全局最优Web服务选择方法[J].电子学报,2010,38(12):2774-2779. Wang Wen-bin,Sun Qi-bo,Zhao Xin-chao,et al.Web services selection approach with QoS global optimal based on discrete particle swarm optimization with non-uniform mutation algorithm[J].Acta Electronica Sinica,2010,38(12):2774-2779.(in Chinese)
[13]  Karakuzu C.Parameter tuning of fuzzy sliding mode controller using particle swarm optimization[J].Journal of Innovative Computing,Information and Control,2010,6(10):4755-4770.
[14]  Sabat Samrat L,Ali Layak,Udgata Siba K.Integrated learning particle swarm optimizer for global optimization[J].Applied Soft Computing,2011,11(1):574-584.
[15]  Shelokar PS,Siarry Partrick,Jayaraman VK,et al.Particle swarm and ant colony algorithms hybridized for improved continuous optimization[J].Applied Mathematics and Computation,2007,188(1):129-142.
[16]  R Poli.Mean and variance of the sampling distribution of particle swarm optimizers during stagnation[J].IEEE Trans.on Evolutionary Computation,2009,13(4):712-721.
[17]  Tang K,Yao X,Suganthan P N,et al.Benchmark functions for the CEC’2008 special session and competition on large scale global optimization .Hefei,China:University of Science and Techno logy of China,2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133