全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

一种基于精细化稀疏自适应匹配追踪算法的图像检索方法研究

DOI: 10.3969/j.issn.0372-2112.2014.12.018, PP. 2457-2466

Keywords: 压缩感知,图像检索,纹理特征,颜色特征,自适应匹配追踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于压缩感知理论,研究了一种精细化稀疏自适应匹配追踪(MeticulousSparsityAdaptiveMatchingPursuit,MSAMP)算法,在此基础上提出了一种新的数字图像检索方法.首先对图像的RGB颜色、灰度共生矩阵按照列优先次序形成颜色及纹理的原始信号,然后对这两类信号采用分块压缩感知测量方法对图像进行分块测量,得到代表颜色特征和纹理特征的分块测量向量.其次利用MSAMP算法进行分块重构,计算出分块原始信号差量及其稀疏值.最后在图像检索时,通过计算图像的整体相似度,重点对差量的稀疏性进行估计,不需要精确恢复原始信号,从而减少迭代次数,加快检索速度.仿真实验表明,应用MSAMP算法的图像检索方法在检索速度和查准率等指标上具有较高的性能.

References

[1]  Romberg J.Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):14-20.
[2]  焦李成,杨淑媛,刘芳,等.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. Jiao Licheng,Yang Shuyuan,Liu Fang,et al.Development and prospect of compressive sensing[J].Acta Electronica Sinica,2011,39(7):1651-1662.(in Chinese)
[3]  练秋生,周婷.结合字典稀疏表示和非局部相似性的自适应压缩成像算法[J].电子学报,2012,40(7):1416-1422. Lian Qiusheng,Zhou Ting.Adaptive compressed imaging algorithm combined the sparse representation in the dictionaries with non-local similarity[J].Acta Electronica Sinica,2012,40(7):1416-1422.(in Chinese)
[4]  Candes E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9-10):589-592.
[5]  Mahdi Cheraghchi,Venkatesan Guruswami,Ameya Velingker.Restricted isometry of Fourier matrices and list decodability of random linear codes[A].Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),2013.[C].New Orleans:SIAM,2013.
[6]  许志强.压缩感知[J].中国科学:数学,2012,42(9):865-877. Xu Zhiqiang.Compressed sensing:a survey[J].Sci Sin Math,2012,42(9):865-877.(in Chinese)
[7]  Joel Tropp,Anna Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans on Information Theory,2007,53(12):4655-4666.
[8]  J Wang,S Kwon,B Shim.Generalized orthogonal matching pursuit[J].IEEE Trans Signal Process,2012,60(12):6202-6216.
[9]  何云峰,周玲,于俊清,等.基于局部特征聚合的图像检索方法[J].计算机学报,2011,34(11):2224-2233. He Yunfeng,Zhou Ling,Yu Junqin,et al.Image retrieval based on locally features aggregating[J].Chinese Journal of Computers,2011,34(11):2224-2233.(in Chinese)
[10]  庄凌,庄越挺,吴江琴,等.一种基于稀疏典型性相关分析的图像检索方法[J].软件学报,2012,23(5):1295-1304. Zhuang Ling,Zhuang Yueting,Wu Jiangnqin,et al.Image retrieval approach based on sparse canonical correlation analysis[J].Journal of Software,2012,23(5):1295-1304.(in Chinese)
[11]  冯松鹤,郎丛妍,须德.一种融合图学习与区域显著性分析的图像检索算法[J].电子学报,2011,39(10):2288-2294. Feng Songhe,Lang Congyan,Xu De.Combining graph learning and region saliency analysis for content based image Rretrieval[J].Acta Electronica Sinica,2011,39(10):2288-2294.(in Chinese)
[12]  李清勇,胡宏,施智平,等.基于纹理语义特征的图像检索研究[J].计算机学报,2006,29(1):116-123. Li Qingyong,Hu Hong,Shi Zhiping,et al.Research on texture based semantic image retrieval[J].Chinese Journal of Computers,2006,29(1):116-123.(in Chinese)
[13]  刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. Liu Li,Kuang Gangyao.Overview of image textural feature extraction methods[J].Journal of Image and Graphics,2009,14(4):622-635.(in Chinese)
[14]  贺广南,杨育彬,阮佳彬,等.基于视觉一致性的图像检索[J].中国图象图形学报,2011,16(4):503-509. He Guangnan,Yang Yubin,Ruan Jiabin,et al.Image retrieval based on visual consistency[J].Journal of Image and Graphics,2011,16(4):503-509.(in Chinese)
[15]  M E ElAlami.A novel image retrieval model based on the most relevant features[J].Knowledge-Based Systems,2011,24:23-32.
[16]  常哲,侯榆青,李明俐,等.综合颜色和纹理特征的图像检索[J].小型微型计算机系统,2011,32(1):161-164. Chang Zhe,Hou Yuqing,Li Mingli,et al.Image retrieval based on combined color with texture feature[J].Journal of Chinese Computer Systems,2011,32(1):161-164.(in Chinese)
[17]  孙君顶,郭启强,周雪梅.基于颜色和纹理特征的彩色图像检索[J].计算机工程与应用,2010,46(29):176-178. Sun Junding,Guo Qiqiang,Zhou Xuemei.Image retrieval based on color and texture features[J].Computer Engineering and Applications,2010,46(29):176-178.(in Chinese) [SD34]
[18]  Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[19]  Candes E,Wakin M.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[20]  Joel Goodman,Keith Forysthe,Benjamin Miller.Efficient reconstruction of block-sparse signals[J].IEEE Statistical Signal Processing Workshop,2011:629-632.
[21]  Taner Ince,Arif Nacaroglu,Nurdal Watsuji.Nonconvex compressed sensing with partially known signal support[J].Signal Processing,2013,93(1):338-344.
[22]  Haixiao Liu,Bin Song,Hao Qin,et al.An adaptive-ADMM algorithm with support and signal value detection for compressed sensing[J].IEEE Trans on Signal Processing Letters,2013,20(4):315-318.
[23]  T Wimalajeewa,H Chen,P K Varshney.Performance limits of compressive sensing-based signal classification[J].IEEE Trans.on Signal Processing,2012,60(6):2758-2770.
[24]  周燕,曾凡智,卢炎生,等.基于压缩感知的图像检索方法研究[J].中山大学学报(自然科学版),2014,53(1):57-62. Zhou Yan,Zeng Fanzhi,Lu Yansheng,et al.An image retrieval method based on compressive sensing[J].Acta Scientiarum Naturalium Universitatis SunYatsen,2014,53(1):57-62.(in Chinese)
[25]  Entao Liu,Vladimir N.Temlyakov.The orthogonal super greedy algorithm and applications in compressed sensing[J].IEEE Trans on Information Theory,2012,58(4):2040-2047.
[26]  Thong T D,Gan L.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[A].Proc of the Fortieth-Second Asilomar Conference on Signals System and Computers[C].Pacific Grove,CA:IEEE,2013.581-587.
[27]  甘伟,许录平,罗楠,等.一种自适应压缩感知重构算法[J].系统工程与电子技术,2011,33(9):1948-1953. Gan Wei,Xu Luping,Luo Nan,et al.Adaptive recovery algorithm for compressive sensing[J].Systems Engineer ing and Electronics,2011,33(9):1948-1953.(in Chinese)
[28]  Jae Young Park,Han Lun Yap,Christopher J,et al.Concentration of measure for block diagonal matrices with applications to compressive sensing[J].Signal Processing,IEEE Transactions on Preprint,2011,59(12):1-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133