全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

基于多目标微粒群优化的异质数据特征选择

DOI: 10.3969/j.issn.0372-2112.2014.07.012, PP. 1320-1326

Keywords: 特征选择,异质数据,多目标优化,微粒群优化,高斯采样

Full-Text   Cite this paper   Add to My Lib

Abstract:

环境和测量仪器精度的影响,使得采样数据的不同特征具有不同的质量.对这类异质数据进行特征选择,需要同时考虑特征子集确定分类器的准确度和可靠性,从而增加了特征选择的难度.本文研究异质数据的特征选择问题,提出一种基于多目标微粒群优化的特征选择方法.该方法首先以特征选择的概率为决策变量,将具有离散变量的特征选择问题,转化为连续变量多目标优化问题;然后,采用微粒群优化求解时,基于高斯采样,产生微粒的全局引导者,以提高Pareto解集的分布性;最后,依据储备集中元素更新的速度,确定需要扰动的微粒,以帮助微粒群跳出局部最优.将所提方法应用于多个典型数据集分类问题,实验结果表明了所提方法的有效性.

References

[1]  Zhang W,Liu Y T.Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm[J].Journey of Electrical Power and Energy Systems,2008,30(9):525-532.
[2]  Moslehi G,Mahnam M.A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search[J].International Journal of Production Economics,2011,129(1):14-22.
[3]  Mohammad J A,Davar G.Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules[J].Engineering Applications of Artificial Intelligence,2013,26(1):603-608.
[4]  Coello C C A,Pulido G T,Lechuga M S.Handing multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
[5]  Zhang Y,Gong D W,Ding Z H.A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch[J].Information Sciences,2012,192(1):213-227.
[6]  Gong D W,Zhang Y,Zhang J H.Multi-objective Particle swarm optimization based on minimal particle angle[J].Lecture Notes in Computer Science,2005,3644(1):571-580.
[7]  Roberto H W,George D C,Renato F C,et al.A global-ranking local feature selection method for text categorization[J].Expert System with Applications,2012,39(17):12851-12857.
[8]  朱颢东,钟勇.基于并行二进制免疫量子粒子群优化的特征选择方法[J].控制与决策,2010,25(1):53-63. Zhu Ying-dong,Zhong Yong.Feature selection method based on PBIQPSO[J].Control and Decision,2010,25(1):53-63.(in Chinese)
[9]  Peng S H,Xu Q H,Ling X B,et al.Molecular classification of cancer types from micro array data using the combination of genetic algorithms and support vector machines[J].FEBS Letters,2003,555(2):358-362.
[10]  Chuang L Y,Yang C H,Li J C.Chaotic maps based on binary particle swarm optimization for feature selection[J].Applied Soft Computing,2011,11(1):239-248.
[11]  宋炜,刘强.基于模拟退火算法的过程挖掘研究[J].电子学报,2009,37(S1):135-139. Song Wei,Liu Qiang.Business process mining based on simulated annealing[J].Acta Electronica Sinica,2009,37(S1):135-139.(in Chinese)
[12]  张昊,陶然,李志勇,蔡镇河.基于KNN算法及禁忌搜索算法的特征选择方法在入侵检测中的应用研究[J].电子学报,2009,37(7):1628-1632. Zhang Hao,Tao Ran,Li Zhi-yong,et al.A research and application of feature selection based on KNN and tabu search algorithms in the intrusion detection[J].Acta Electronica Sinica,2009,37(7):1628-1632.(in Chinese)
[13]  李国辉,冯明月,易先清.基于分群粒子群优化的传感器调度方法[J].系统工程与电子技术,2010,32(3):598-602. Li Guo-hui,Feng Ming-yue,Yi Xian-qing.Sensor scheduling method based on grouping particle swarm optimization[J].Journal of Systems Engineering and Electronics,2010,32(3):598-602.(in Chinese)
[14]  Alper U,Alper M.A discrete particle swarm optimization method for feature selection in binary classified problems[J].European Journal of Operational Research,2010,206(3):528-539.
[15]  Jin C,Jin S W,Qin L N.Attribute selection method based on a hybrid BPNN and PSO algorithms[J].Applied Soft Computing,2012,12(8):2147-2155.
[16]  李中凯,谭建荣,冯毅雄等.基于拥挤距离排序的多目标粒子群优化算法及应用[J].计算机集成制造系统,2008,14(7):1329-1336. Li Zhong-kai,Tan Jian-rong,Feng Yi-xiong,et al.Multi-objective particle swarm optimization based on crowding distance sorting and its application[J].Computer Integrated Manufacturing Systems,2008,14(7):1329-1336.(in Chinese)
[17]  Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[18]  Tripathi P K,Bandyopadhyay S,Pal S K.Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients[J].Information Sciences,2007,177(22):5033-5049.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133