全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

面向敏感性攻击的多敏感属性数据逆聚类隐私保护方法

DOI: 10.3969/j.issn.0372-2112.2014.05.010, PP. 896-903

Keywords: 隐私保护,敏感性攻击,逆聚类,多敏感属性,(l1,l2,,ld)-多样性,敏感度差异

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统l-多样性模型仅考虑等价类中敏感值形式上的差异,而忽略敏感值的敏感度差异,且难以抵御一种新的攻击方式——敏感性攻击的问题,提出了一种使用逆文档频率IDF度量敏感值的敏感度的方法,并使用属性分解的方式构造敏感组,以避免多敏感属性数据表的QI属性泛化造成的高信息损失.同时,还提出了一种面向敏感性攻击的多敏感属性(l1,l2,…,ld)-多样性隐私保护算法MICD,该算法通过敏感度的逆聚类实现敏感组中敏感值的敏感度差异,以提高多敏感属性数据表抵御敏感性攻击的能力.实验结果表明,MICD算法能够较好的抵御敏感性攻击,且具有较小的信息损失量.

References

[1]  Sweeney L.Computational disclosure control:A primer on data privacy protection[D].Massachusetts Institute of Technology,2001.
[2]  Machanavajjhala A,Kifer D,Gehrke J.l-diversity:Privacy beyond k-anonymity[J].ACM Transactions on Knowledge Discovery from Data,2007,1(1):1-52.
[3]  杨高明,杨静,张健沛.聚类的(α,k)-匿名数据发布[J].电子学报,2011,39(8):1941-1946. Yang Gaoming,Yang Jing,Zhang Jianpei.Achieving (α,k)-anonymity via clustering in data publishing[J].Acta Electronica Sinica,2011,39(8):1941-1946.(in Chinese)
[4]  Batya Kenig,Tamir Tassa.A practical approximation algorithm for optimal k-anonymity[J].Data Mining and Knowledge Discovery,2012,1(25):134-168.
[5]  韩建民,于娟,虞慧群,等.面向敏感值的个性化隐私保护[J].电子学报,2010,38(7):1723-1728. Han Jianmin,Yu Juan,Yu Huiqun,et al.Individuation privacy preservation oriented to sensitive values[J].Acta Electronica Sinica,2010,38(7):1723-1728.(in Chinese)
[6]  Xiaoxun Sun,Min Li,Hua Wang.A family of enhanced (L,α)-diversity models for privacy preserving data publishing[J].Future Generation Computer Systems,2011,27(3):348-356.
[7]  王波,杨静.一种基于逆聚类的个性化隐私匿名方法[J].电子学报,2012,40(5):883-890. Wang Bo,Yang Jing.A personalized privacy anonymous method based on inverse clustering[J].Acta Electronica Sinica,2012,40(5):883-890.(in Chinese)
[8]  Sweeney L.k-anonymity:A model for protecting privacy[J].International Journal on Uncertainty,Fuzziness and Knowledge Based Systems,2002,10(5):557-570.
[9]  杨晓春,王雅哲,王斌,等.数据发布中面向多敏感属性的隐私保护方法[J].计算机学报,2008,31(4):574-587. Yang Xiaochun,Wang Yazhe Wang bin,et al.Privacy preserving approaches for multiple sensitive attributes in datapublishing[J].Chinese Journal of Computers,2008,31(4):574-587.(in Chinese)
[10]  Ye Y,Liu Y,Wang C.Decomposition:privacy preservation for multiple sensitive attributes[A].Proc of the 14th International Conf on Database Systems for Advanced Applications[C].Berlin:Springer,2009.486-490.
[11]  Devayon D,Dhruba K.Decomposition+:Improving l-diversity for multiple sensitive attributes[A].Proc of 2nd International Conf on Advances in Computer Science and Information Technology[C].Berlin:Springer,2012.403-412.
[12]  Xiaokui Xiao,Ke Yi,Yufei Tao.The hardness and approximation algorithms for l-diversity[A].Proc of the 13th International Conf on Extending Database Technology[C].New York:ACM,2010.135-146.
[13]  Ninghui Li,Jian Zhang,Molloy I.Slicing:A new approach for privacy preserving data publishing[J].IEEE Transactions on Knowledge and Data Engineering,2009,24(3):561-574.
[14]  王智慧,许俭,汪卫,等.一种基于聚类的数据匿名方法[J].软件学报.2010,21(4):680-693. Wang Zhihui,Xu Jian,Wang Wei,et al.Clustering-based approach for data anonymization[J].Journal of Software,2010,21(4):680-693.(in Chinese)
[15]  J Liu,K Wang.On optimal anonymization for l+-diversity[A].Proc of IEEE 26th International Conf on Data Engineering[C].New York:IEEE Computer Society,2010.213-224.[FL)] [FL(2K2]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133