全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

一类p元最优线性码和低相关性线性序列的构造

DOI: 10.3969/j.iss.0372-2012-2014.03.022, PP. 572-577

Keywords: 迹映射,最优线性码,低相关性,线性序列

Full-Text   Cite this paper   Add to My Lib

Abstract:

在信息理论中,最优线性码具有很强的纠错能力、低相关性线性序列在密码系统和CDMA通信系统中得到了广泛应用.因此构造最优线性码和构造低相关性线性序列具有重要的研究价值.记R=Fp+uFp,这里的p为奇素数.本文首先通过迹映射构造出环R上的一类新的线性码,然后将这类新的线性码的删余码通过Gray映射得到了域Fp上一类最优码.同时,通过迹映射构造出环R上的一类线性循环码,将这类线性循环码视为线性周期序列并通过广义Nechaev-Gray映射得到了域Fp上一类低相关线性周期序列.

References

[1]  Nechaev A.Kerdock code in a cyclic form[J].Discrete Mathematics Applications, 1991, 1(4):365-384.
[2]  Bachoc C.Application of coding theory to the construction of modular lattices[J].Journal of Combinational Theory, Series A, 1997, 78(1):92-119.
[3]  Bonnecaze A, Udaya P.Cyclic codes and self-dual codes over F2+uF2[J].IEEE Transactions on Information Theory, 1999, 45(4):1250-1255.
[4]  Zhu S X, Wang L Q.A class of constacyclic codes over Fp+vFp and its Gray image[J].Discrete Mathematics, 2011, 311(23-24):2677-2682.
[5]  Ling S and Solé P.Nonlinear p-ary sequences[J].Applicable Algebra in Engineering, Communication and Computing, 2003, 14(2):117-125.
[6]  Lahtonen J, Ling S, Solé P and Zinovievd D.Z8-Kerdock codes and pseudorandom binary sequences[J].Journal of Complexity, 2004, 20(2-3):318-330.
[7]  Amarra M C V, Nemenzo F R.On (1-u)-cyclic codes over Fpk+uF
[8]  Hammons A R, Kumar Jr P V, Calderbank A R, et al.The Z4-linearity of Kerdock, Preparata, Goethals and related codes[J].IEEE Transactions on Information Theory, 1994, 40(2):301-319.
[9]  Wan Z X.Quaternary Codes[M].Singapore:World Scientific, 1997.93-112.
[10]  Zhu S X, Tang Y S.A MacWilliams type identity on Lee weight for linear codes over F2+uF2[J].Journal of Systems Science and Complexity, 2012, 25(1):186-194.
[11]  施敏加, 杨善林, 朱士信.环F2+uF2上长度为2s的循环码的距离[J].电子学报, 2011, 39(1):29-34. Shi Min-jia, Yang Shan-lin, Zhu Shi-xin.On minimum distances of cyclic codes of length 2s over F2+uF2[J].Acta Electronica Sinica, 2011, 39(1):29-34.(in Chinese)
[12]  Dinh H Q, Nguyen H D T.On some classes of constacyclic codes over polynomial residue rings[J].Advances in Mathematics of Communications, 2012, 6(2):175-191.
[13]  Shi M J, Yang S L, Zhu S X.Good p-ary quasic-cyclic codes from cyclic codes over Fp+vFp[J].Journal of Systems Science and Complexity, 2012, 25:375-384.
[14]  Rao A, Pinnawala N.New linear codes over Zps via the trace map[A].Rao A, Pinnawala N.2005 Preceedings of the IEEE International Symposium on Information Theory[C].Adelaide, Australia:IEEE, 2005.124-126.
[15]  Golomb S W, Gong G.Signal Design for Good Correlation-For Wireless Communication, Cryptography, and Radar[M].Cambridge, UK:Cambridge University Press, 2005.419-421.
[16]  Ding C S, Yang Y, Tang X H.Optimal sets of frequency hopping sequences from linear cyclic codes[J].IEEE Transactions on Information Theory, 2010, 56(7):3605-3612.
[17]  Zhou Z C, Tang X H, Peng D Y, et al.New constructions for optimal sets of frequency-hopping sequences[J].IEEE Transactions on Information Theory, 2011, 57(6):3831-3840.
[18]  Barg A.Two families of low-correlated binary sequences[J].Applicable Algebra in Engineering, Communication and Computing, 1996, 7(6):433-437.
[19]  pk[J].Applied Mathematics Letters, 2008, 21(11):1129-1133.
[20]  吴波, 朱士信, 李平.环Fp+uFp上Kerdock码和Preparata码[J].电子学报, 2008, 36(7):1364-1367. Wu Bo, Zhu Shi-xin, Li Ping.Kerdock code and Preparata code over ring Fp+uFp[J].Acta Electronica Sinica, 2008, 36(7):1364-1367.(in Chinese)
[21]  Code Tables:Bounds on the Parameters of Varous Types of Codes[EB/OL].http://www.codetables.de/, 2009-09-07.
[22]  Ling S and Ozbudak F.An Improvement on the bounds of Weil exponential sums over Galois rings with some application[J].IEEE Transactions on Information Theory, 2004, 50(10):2529-2539.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133