A M Bruckstein, D L Donoho, M Elad.From sparse solutions of systems of equations to sparse modeling of signals and images[J].SIAM Review, 2009, 51(1):34-81.
[5]
F H Clarke.Optimization and Nonsmooth Analysis[M].New York:John Wiley and Sons, 1983.
[6]
J V Burke, D Henrion, A S Lewis, M L Overton.Stabilization via nonsmooth, nonconvex optimization[J].IEEE Transation on Automatic Control, 2006, 51(11):1760-1769.
[7]
L Bedini, I Gerace, A Tonazzini.A GNC algorithm forconstrained image reconstruction with continuous-value line process[J].Pattern Recognition Letters, 1994, 15(9):907-918.
[8]
M Nikolova.Markovian reconstruction using a GNC approach[J].IEEE Transation on Image Processing, 1999, 8(9):1204-1220.
[9]
M Nikolova, K N Michael, C P Tam.Fast nonconvex nosmooth minimization methods for image restoration and reconstruction[J].IEEE Transation on Image Processing, 2010, 19(12):3073-3088.
[10]
易翔, 王蔚然.一种概率自适应图像去噪模型[J].电子学报, 2005, 33(1):63-66. Yi Xiang, Wang Wei-ran, A probability model for adaptive image denoising[J].Acta Electronica Sinica, 2005, 33(1):63-66.(in Chinese)
[11]
R Buil, M A Piera, P B Luh.Improvement of Lagrangian relaxation convergence for production scheduling[J].IEEE Transation on Automatic Control, 2012, 9(1):137-147.
[12]
R N Gasimov.Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming[J].Journal of Global Optimization, 2002, 24(2):187-203.
[13]
R S Burachik, C Y Kaya.An update rule and a convergence result for a penalty function method[J].Journal of Industrial and Management Optimization, 2007, 3(2):381-398.
[14]
R T Rockafellar.Lagrange muitipliers and optimality[J].SIAM Review, 1993, 35(2):183-238.
[15]
Sun Wen-yu, Yuan Ya-xiang.Optimization Theory and Method:Nonlinear Programming[M].Springer, 2006.
[16]
P M Camerini, L Fratta, F Maffioli.On improving relaxation methods by modified gradient techniques[J].Mathematical Programming Study, 1975, 3(3):26-34.
[17]
M Held, R M Karp.The traveling salesman problem and minimum spanning trees:part Ⅱ[J].Mathematical Programming, 1971, 1(1):6-25.
[18]
A Chambolle.An algorithm for total variation minimization and Applications[J].Journal of Mathematical Imaging and Vision, 2004, 20(1-2):89-97.
[19]
K N Michael, Qi Li-qun, Yang Yu-fei, Huang Yu-mei.On semismooth Newton''s methods for totel variation minimization[J].Journal of Mathematical Imaging and Vision, 2007, 27(3):265-276.