全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

遥感影像的半监督判别局部排列降维

DOI: 10.3969/j.issn.0372-2112.2014.01.013, PP. 84-88

Keywords: 半监督,判别局部排列,,降维,遥感影像

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对遥感影像数据具有的高维数和少量已标记样本的特性,提出一种基于图的半监督判别局部排列降维方法.首先,针对全部已标记和未标记样本数据构造相似图和惩罚图.然后,基于同类近邻点的分散度最小且不同类近邻点的分散度最大的原则,分别确立相似图和惩罚图上的优化目标.最后,通过同时优化这两种图上的目标函数,得到从高维到低维的最优映射关系,从而达到对高维遥感影像数据维数约简的目的.ROSIS高光谱数据上的实验结果表明,所提算法能够有效提高高维遥感影像的总体精度和Kappa系数.

References

[1]  T H Zhang,D Tao,J Yang.Discriminative locality alignment[J].Lecture Notes in Computer Science,2008,5302:725-738.
[2]  何强,蔡洪,韩壮志,尚朝轩.基于非线性流形学习的ISAR目标识别研究[J].电子学报,2010,38(3):585-590. He Qiang,Cai Hong,Han Zhuangzhi,Shang Chaoxuan.ISAR target recognition based on non-linear manifold learning[J].Acta Electronica Sinica,2010,38(3):585-590.(in Chinese)
[3]  宋娟,李云松,吴成柯,王柯俨.基于L∞最小搜索和陪集码的高光谱图像无损及近无损压缩 .电子学报,2011,39(7):1551-1555. Song Juan,Li Yunsong,Wu Chengke,Wang Keyan.Lossless and near-lossless compression of hyperspectral images based on search for L∞ minimum and coset coding[J].Acta Electronica Sinica,2011,39(7):1551-1555.(in Chinese)
[4]  C I Chang.Hyperspectral Data Exploitation:Theory and Applications[M].USA:John Wiley & Sons,Inc.2007.
[5]  S P Zhang.Studies of high spectral resolution atmospheric sounding data compression and noise reduction based on principal component analysis method [A].Proceedings of the 2nd International Conference on Image and Signal Processing [C].Piscataway:IEEE,2009.4693-4697.
[6]  M S Cui,S Prasad,M Mahrooghy,L M Bruce,J Aanstoos.Genetic algorithms and linear discriminant analysis based dimensionality reduction for remotely sensed image analysis [A].Proceedings of the International Geoscience and Remote Sensing Symposium [C].Piscataway:IEEE,2011.2373-2376.
[7]  J P Sun,Y Liu.The fusion arithmetic of multi-resolution remote sense image based on a modified fast independent component analysis [A].Proceedings of the 1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings [C].Piscataway:IEEE,2007.342-346.
[8]  X Wang,S Kumar,T Kaupp,B Upcroft,H F Durrant-Whyte.Applying ISOMAP to the learning of hyperspectral image [A].Proceedings of Australasian Conference on Robotics and Automation [C].Australia:ARAA,2005.109-112.
[9]  G Matijevic,A Prsa,J A Orosz,W F Welsh,S Bloemen,T Barclay.Kepler eclipsing binary stars III classification of Kepler eclipsing binary light curves with locally linear embedding[J].Astronomical Journal,2012,143(5):123-128.
[10]  Y Bengio,J F Paiement,P Vincent,O Delalleau,N L Roux,M Ouimet.Out-of-sample extensions for LLE,Isomap,MDS,eigenmaps,and spectral clustering [A].Proceedings of Advances in Neural Information Processing Systems [C].Massachusetts:The MIT Press,2003.184-191.
[11]  Y W Chen,X H Han.Classification of high-resolution satellite images using supervised locality preserving projections[J].Lecture Notes in Computer Science,2008,5178:149-156.
[12]  张田昊.数据降维算法研究及其应用 [D].上海:上海交通大学博士学位论文,2008. Zhang Tianhao.Research on dimensionality reduction algorithms and its applications [D].Shanghai:Doctoral Thesis of Shanghai Jiao Tong University,2008.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133