全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

针对RDF概率图查询的基数估计方法

DOI: 10.3969/j.issn.0372-2112.2015.09.010, PP. 1745-1749

Keywords: 不确定资源描述框架图,查询处理,选择基数估计,查询优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

资源描述框架图查询中,准确估计查询结果的大小是查询优化器中的关键步骤.已有方法忽略了该图自身的不确定性以及子查询间的关联关系,无法有效估计结果.针对该问题,本文提出一种基于贝叶斯模型的基数估计方法.该方法引入贝叶斯网络模型,挖掘出子查询内的属性依赖.同时,在这些属性依赖的基础上提出子网拼接方法,计算出子查询间的影响因子.最后,利用以上信息准确估计出任意查询结果集的基数.实验表明:与已有方法相比,本文方法的准确性提高15%以上,性能没有大幅度下降.

References

[1]  Yannis E I.The history of histograms (abridged)[A].International Conference on Very Large Data Bases[C].San Fransisco:Morgan Kaufmann,2003.19-30.
[2]  Thomas N,Guido M.Characteristic sets:accurate cardinality estimation for RDF queries with multiple joins[A].IEEE International Conference on Data Engineering[C].Washington:IEEE Press,2011.984-994.
[3]  Markus S,et al.SPARQL basic graph pattern optimization using selectivity estimation[A].International World Wide Web Conferences[C].London:Springer,2008.595-604.
[4]  Hai H,Chengfei L.Estimating selectivity for joined RDF triple patterns[A].ACM International Conference on Information and Knowledge Management[C].New York:ACM,2011.1435-1444.
[5]  Xiang L,Lei C.Efficient query answering in probabilistic RDF graphs[A].ACM Conference on Management of Data[C].New York:ACM,2011.157-168.
[6]  Ye Y,et al.Efficient subgraph similarity search on large probabilistic graph databases[J].The Proceedings of the VLDB Endowment,2012,5(9):800-811.
[7]  Judea P.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M].San Fransisco:Morgan Kaufmann,1989.1-552.
[8]  Jiawei H,Micheline K.Data Mining:Concepts and Techniques[M].San Fransisco:Morgan Kaufmann,2000.204-206.
[9]  Jie C,et al.Learning belief networks from data:an information theory based approach[A].ACM International Conference on Information and Knowledge Management[C].New York:ACM,1997.325-331.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133