全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

一种混沌伪随机序列均匀化普适算法的改进

DOI: 10.3969/j.issn.0372-2112.2015.04.018, PP. 753-759

Keywords: 数字混沌,均匀性,暂态数据,暂态变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了分析盛利元等所述算法的安全性与普适性,从信息论的角度提出了单轮迭代信息损失量和动力学系统平均信息损失速度的概念,分析结果表明,第二类比特位变换的单轮迭代信息损失量为12比特,标准第二类比特位变换的单轮迭代信息损失量与指数e有关,存在信息损失量较小的可能性,将1023-e作为移位位数,使得标准第二类比特位变换无法遍历[-1,1]区间内的所有浮点数.进一步提出了暂态数据和第一类暂态变换的概念,并对文献[14]中所述算法进行了改进,改进后算法能够将任意混沌输出序列转换为至[0,1]区间内的浮点数,转换过程的信息损失量为L-1比特,接近有限计算精度为L时的最大信息损失速度Imax=L,且通过χ检验可证明转换后的混沌输出序列服从均匀分布.

References

[1]  Gottlieb Pirsic,Arne Winterhof.On the structure of digital explicit nonlinear and inversive pseudorandom number generators[J].Journal of Complexity,2010,26(1):43-50.
[2]  A Peinado,A Fuster-Sabater.Generation of pseudorandom binary sequences by means of linear feedback shift registers(LFSRS) with dynamic feedback[J].Mathematical and Computer Modelling,2013,57(11-12):2596-2604.
[3]  Kit-Ho Mak.More constructions of pseudorandom sequences of k symbols[J].Finite Fields and Their Applications,2014,25(1):222-233.
[4]  A Kanso,N Smaoui.Logistic chaotic maps for binary numbers generations[J].Chaos,Solitons and Fractals,2009,40(5):2557-2568.
[5]  Hanping Hu,LingFeng Liu,NaiDa Ding.Pseudorandom sequence generator based on the Chen chaotic system[J].Computer Physics Communications,2013,184(3):765-768.
[6]  L Palacios-Luengas,G Delgado-Gutierrez,M Cruz-Irisson,J L Del-Rio-Correa,RVazquez-Medina.Digital noise produced by a non discretized tent chaotic map[J].Microelectronic Engineering,2013,112(1):264-268.
[7]  Ping Li,Zhong Li,Wolfgang A Halang,Guanrong Chen.A multiple pseudorandom-bit generator based on a spatiotemporal chaotic map[J].Physics Letters A,2006,349(6):467-473.
[8]  Liu Nian-sheng.Pesudo-randomness and complexity of binary sequences generated by the chaotic system[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(2):761-768.
[9]  M Francois,T Grosges,D Barchiesi,R Erra.Pseudo-random number generator based onmixing of three chaotic maps[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(4):887-895.
[10]  盛利元,肖燕予,等.将混沌序列变换成均匀伪随机序列的普适算法[J].物理学报,2008,5(7):4007-4013. Sheng Liyuan,Xiao Yanyu,et al.A universal algorithm for transforming chaoticsequences into uniform pseudo-random sequences[J].Acta Physica Sinica,2008,5(7):4007-4013.(in Chinese)
[11]  孙克辉,贺少波,何毅,尹林子.混沌伪随机序列的谱熵复杂性分析[J].物理学报,2013,62(1):010501-1-010501-8. Kehui Sun,Shaobo He,Yi He,Linzi Yin.Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J].Acta Physica Sinica,2013,62(1):010501-1-010501-8.(in Chinese)
[12]  Xiaoni Du,Andrew Klapper,Zhixiong Chen.Linear complexity of pseudorandom sequence generated by Fermat quotients and their generalizations[J].Information Processing Letters,2012,112(6):233-237.
[13]  Fatih Ozkaynak,Sirma Yavuz.Security problems for a pseudorandom sequence generator based on the Chen chaotic system[J].Computer Physics Communications,2013,184(9):2178-2181.
[14]  K J Persohn,R J Povinelli.Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation[J].Chaos,Solitons and Fractals,2012,45(3):238-245.
[15]  张占锋,盛利元,刘长水.混沌伪随机序列均匀化普适算法的FPGA实现[J].计算机测量与控制,2009,17(12):2525-2554. Zhang Zhanfeng,Sheng Liyun,liu Changshui.FPGA implementation of a universal algorithm for uniformization of chaotic pseudo-random sequences[J].Computer Measurement & Control,2009,17(12):2525-2554.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133