Ljung L.System Identification Theory for User[M].Prentice-Hall,1987.1-115.
[2]
Mukherjee S,et al.Nonlinear prediction of chaotic time series using support vector machines[A].Proceeding of the IEEE Workshop on Neural Networks for Signal Processing[C].Ameliz Island,1997.511-520.
[3]
Ince H,et al.Kernel principal component analysis and support vector machines for stock price prediction[A].Proceeding of the IEEE International Joint Corfference on Neural Networks[C].Budapest,Hungary,2004:2053-2058.
[4]
解应春,王海清,李平.RKRLS及在混炼胶质量建模与预测中的应用研究[J].浙江大学学报,2004,38(8):941-945.Xie Ying-chun,Wang Hai-qing,a al.RKRLS and its application to modeling and prediction of rubber compound quality[J].Journal of Zhejiang University(Engineering Science),2004,38 (8):941-945.(in Chinese)
[5]
Tune Series Prediction group[EB/OL],http://www.cis.hut.fi/projects/tsp/? page=Timeseries,2006-05-08.
[6]
Lendasse A,et al.Vector quantization:a weighted version for time-series forecasting[J].Future Generation Computer Systems,2005,21 (7):1056-1067.
[7]
Versace M,et al.Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks[J].Expert Systems with Applications,2004,27 (3):417-425.
[8]
Mitani Y,et al.Time series prediction of acoustic signals using neural network model and wavelet shrinkage[A].Proceedings of the Tenth International Congress on Sound and Vibration[C].Stockholm,Sweden:ⅡAV,2003.4189-4196.
[9]
Huang N E,et al.Applications of Hilbert-Huang transform to non-stationary financial time series analysis[J].Applied Stochastic Models in Business and Industry,2003,19(3):245-268.
[10]
Engel Y,et al.The kernel recursive least-squares algorithm[J].IEEE Transaction on Signal Processing,2004,52(8):2275-2285.