全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

谷氨酸和谷氨酰胺转运系统的研究进展

DOI: 10.3969/j.issn.1006-267x.2011.06.002

Keywords: 谷氨酸,谷氨酰胺,转运载体,作用机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

谷氨酸作为幼年动物重要的氨基酸,是肠内能量生成的最大贡献者,它不能由机体自身合成,需额外添加或通过谷氨酸前体物谷氨酰胺转化而成。谷氨酸是谷胱甘肽合成的重要底物,对动物肠道抗氧化剂的提供有重要作用,其转运依靠谷氨酸转运载体完成。因此,本文就谷氨酸和谷氨酰胺转运系统的分类及作用机制做一综述。

References

[1]  OPPEDISANO F, POCHINI L, GALLUCCIO M, et al. The glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: transport mechanism, regulation by ATP and characterization of the glutamine/glutamate antiport[J]. Biochemistry Biophysical Acta, 2007, 1768:291-298.
[2]  SHANKER G, ASCHNER M. Identification and characterisation of uptake systems for cystine and cysteine in cultured astrocytes and neurones: evidence for methylmercury-targeted disruption of astrocyte transport[J]. Journal of Neuroscience Research, 2001, 66:998-1002.
[3]  CHO Y, BANNAI S. Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes[J]. Journal of Neurochemistry, 1990, 55:2091-2097.
[4]  周济宏,李幼生,洪志坚,等.肠黏膜上皮细胞的载体分布及功能[J].医学研究生学报,2009,22(7):677-681.
[5]  CAROZZI V A, CANTA A, OGGIONI N, et al. Expression and distribution of ''high affinity'' glutamate transporters GLT1, GLAST, EAAC1 and of GCPⅡ in the rat peripheral nervous system[J]. Journal of Anatomy, 2008, 213:539-546.
[6]  AOYAMA K, SUH S W, HAMBY A M, et al. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse[J]. National Neuroscience, 2006, 9:119-126.
[7]  YAMAMOTO T, NISHIZAKI I, FURUYA S, et al. Characterization of rapid and high-affinity uptake of L-serine in neurons and astrocytes in primary culture[J]. FEBS Letter, 2003, 548:69-73.
[8]  BROER A, WAGNER C, LANG F, et al. Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance[J]. Biochemistry Journal, 2000, 346:705-710.
[9]  CONTI F, DEBIASI S, MINELLI A, et al. EAAC1, a high-affinity glutamate transporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex[J]. Cerebral Cortex Mar, 1998, 8:108-116.
[10]  XIA P, PEI G, SCHWARZ W. Regulation of the glutamate transporter EAAC1 by expression and activation of delta-opioid receptor[J]. European Journal of Neuroscience, 2006, 24:87-93.
[11]  REXHEPAJ R, GRAHAMMER F, VOLKL H, et al. Reduced intestinal and renal amino acid transport in PDK1 hypomorphic mice[J]. FASEB Journal, 2006, 20:2214-2222.
[12]  WATABE M, AOYAMA K, NAKAKI T. Regulation of glutathione synthesis via interaction between glutamate transport-associated protein 3-18 (GTRAP3-18) and excitatory amino acid carrier-1 (EAAC1) at plasma membrane[J]. Molecular Pharmacology, 2007, 72:1103-1110.
[13]  BUTCHBACH M E, GUO H, LIN C L. Methyl-beta-cyclodextrin but not retinoic acid reduces EAAT3-mediated glutamate uptake and increases GTRAP3-18 expression[J]. Journal of Neurochemistry, 2003, 84:891-894.
[14]  RUGGIERO A M, LIU Y, VIDENSKY S, et al. The endoplasmic reticulum exit of glutamate transporter is regulated by the inducible mammalian Yip6b/GTRAP3-18 protein[J]. Journal of Biology Chemistry, 2008, 283:6175-6183.
[15]  HUANG Y, FENG X, SANDO J J, et al. Critical role of serine 465 in isoflurane-induced increase of cell-surface redistribution and activity of glutamate transporter type 3[J]. Journal of Biological Chemistry, 2006, 281:38133-38138.
[16]  SHELDON A L, GONZALEZ M I, ROBINSON M B. A carboxyl-terminal determinant of the neuronal glutamate transporter, EAAC1, is required for platelet-derived growth factor-dependent trafficking[J]. Journal of Biology Chemistry, 2006, 281:4876-4886.
[17]  GONZALEZ M I, KAZANIETZ M G, ROBINSON M B. Regulation of the neuronal glutamate transporter excitatory amino acid carrier-1 (EAAC1) by different protein kinase C subtypes[J]. Molecular Pharmacology, 2002, 62:901-910.
[18]  KALANDADZE A, WU Y, ROBINSON M B. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter: requirement of a carboxyl-terminal domain and partial dependence on serine 486[J]. Journal of Biology Chemistry, 2002, 277:45741-45750.
[19]  BANNAI S, KITAMURA E. Transport interaction of L-cystine and L-glutamate in human dipliod fibroblasts in culture[J]. Journal of Biological Chemistry, 1980, 255:2372-2376.
[20]  UTSUNOMIYA-TATE N, ENDOU H, KANAI Y. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter[J]. Journal of Biology Chemistry, 1996, 271:14883-14890.
[21]  WANG X, HALD H, ERNST H A, et al. Over-expression, purification and characterization of an Asc-1 homologue from Gloeobacter violaceus[J]. Protein Expression and Purification, 2010, 71:179-183.
[22]  AVISSAR N E, RYAN C K, GANAPATHY V, et al. Na(+)-dependent neutral amino acid transporter ATB(0) is a rabbit epithelial cell brush-border protein[J]. American Journal of Physiology, 2001, 281:963-971.
[23]  DRINGEN R. Metabolism and functions of glutathione in brain[J]. Progress in Neurobiology, 2000, 62:649-671.
[24]  REEDS J P, BURRIN G D, STOLL B, et al. Intestinal glutamate metabolism[J]. Journal of Nutrition, 2000, 130:978-982.
[25]  FAN M Z, MATTHEWS C J, ETIENNE M P N, et al. Expression of apical membrane L-glutamate transporters in neonatal porcine epithelial cells along the small intestinal crypt-villus axis[J]. American Journal of Physiology Gastrointestinal Liver Physiology, 2004, 287:385-398.
[26]  SANTOKH G, PULIDO O. Glutamate receptors in peripheral tissue: excitatory transmission outside the CNS[M]. London: Kluwer Academic/Plenum Publishers, 2005:47-48.
[27]  AOYAMA K, WATABE M, NAKAKI T. Regulation of neuronal glutathione synthesis[J]. Journal of Pharmacology Science, 2008, 108:227-238.
[28]  HINOI E, TAKARADA T, UNO K, et al. Glutamate suppresses osteoclastogenesis through the cystine/glutamate antiporter[J]. American Journal of Pathology, 2007, 4(170):1 277-1 290.
[29]  KANAI Y, HEDIGER A M. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects[J]. European Journal of Physiology, 2004, 447:469-479.
[30]  MCBEAC J G. Cerebral cystine uptake: a tale of two transporters[J]. TRENDS in Pharmacology Science, 2002, 23(7):299-303.
[31]  BODE B P. Recent molecular advances in mammalian glutamine transport[J]. Journal of Nutrition, 2001, 131(9):2475-2485.
[32]  BURDO J, DARGUSCH R, SCHUBERT D. Distribution of the cystine/glutamate antiporter system XC- in the brain, kidney, and duodenum[J]. Journal of Histochemistry and Cytochemistry, 2006, 54(5):549-557.
[33]  KAVANAUGH M P, BENDAHAN A, ZERANGUE N, et al. Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange[J]. Journal of Biology Chemistry, 1997, 272:1703-1708.
[34]  ARRIZA J L, ELIASOF S, KAVANAUGH M P, et al. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance[J]. Proceeding of the National Academy Sciences, 1997, 94:4155-4160.
[35]  TANAKA K. Role of glutamate transporters in astrocytes[J]. Brain Nerve, 2007, 59(7):677-688.
[36]  HOWELL J A, MATTHEWS A D, SWANSON K C, et al. Molecular identification of high-affinity glutamate transporters in sheep and cattle forestomach, intestine, liver, kidney, and pancreas[J]. Journal of Animal Science, 2001, 79:1329-1336.
[37]  HIMI T, IKEDA M, YASUHARA T, et al. Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons[J]. Journal of Neural Transmission, 2003, 110:1337-1348.
[38]  KIYAMA H, KIRYU-SEO S. Multiple functions of glutamate transporter EAAC1 in motor neurons[J]. Brain Nerve, 2007, 59(12):1325-1332.
[39]  BEART P M, OHEA R D. Transporters for L-glutamate: An update on their molecular pharmacology and pathological involvement[J]. British Journal of Pharmacology, 2007, 150:510-517.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133