全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同来源微量元素铁、锌、锰、铜对罗非鱼生长、代谢和非特异性免疫力的影响

DOI: 10.3969/j.issn.1006-267x.2011.05.009

Keywords: 罗非鱼,微量元素,生长,代谢,非特异性免疫力

Full-Text   Cite this paper   Add to My Lib

Abstract:

铁(Fe)、锌(Zn)、锰(Mn)、铜(Cu)按相同的比例,分别以无机微量元素、氨基酸微量元素(Fe、Zn、Mn、Cu的添加量为无机微量元素的50%)和氨基酸微量元素组合体(Fe、Zn、Mn、Cu的添加量为无机微量元素的50%)的形式添加到罗非鱼(Oreochromisniloticus)的基础饲料中,组成3种试验饲料,以不添加微量元素Fe、Zn、Mn、Cu的基础饲料(粗蛋白质32%,总能14MJ/kg)为对照饲料,分别投喂平均体重为(27.2±0.1)g的吉富罗非鱼(每组设3个重复,每个重复30尾鱼)8周,研究不同来源微量元素对罗非鱼生长、代谢和非特异性免疫力的影响。结果表明:饲料中补充微量元素Fe、Zn、Mn、Cu可以显著改善罗非鱼的生长性能、肝胰脏代谢酶活性和非特异性免疫力(P<0.05)。氨基酸微量元素组和氨基酸微量元素组合体组罗非鱼的特定生长率,蛋白质效率,肝胰脏谷丙转氨酶、谷草转氨酶、总超氧化物歧化酶、铜锌超氧化物歧化酶活性以及血清过氧化氢酶、碱性磷酸酶和溶菌酶活性均显著高于无机微量元素组(P<0.05)。由此得出,氨基酸微量元素可以改善罗非鱼的生长性能,提高非特异性免疫力,且其作用效果优于无机微量元素,在生产实践中值得推广。

References

[1]  BRADFORD M M. A refined and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding[J]. Analytical Biochemistry, 1976, 72:248-254.
[2]  APINES M J, SATOH S, KIRON V, et al. Availability of supplemental amino acid chelated trace elements in diets containing tricalcium phosphate and phytate to rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2003a, 225:431-444.
[3]  MA Z J, YAMAGUCHI M. Stimulatory effect of zinc and growth factor on bone protein component in newborn rats: enhancement with zinc and insulin-like growth factor-Ⅰ[J]. International Journal of Molecular Medicine, 2001b, 7:73-78.
[4]  虞泽鹏,乐国伟,施用晖.不同锌源对断奶小鼠生长及机体抗氧化能力的影响[J].畜牧与兽医,2005(4):3-5.
[5]  HILL A D, PEO E R Jr, LEWIS A J, et al. Zinc-amino acid complexes for swine[J]. Journal of Animal Science, 1986, 63:123-130.
[6]  MOURENTE G,TOCHER D R, DIAZ E. Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in Dentex dentx eggs and larvae[J]. Aquaculture, 1999, 179:309-324.
[7]  DUDLEY-CASH W A. Organic farms of zinc may provide additional benefits in poultry[J]. Feedstuffs, 1997(11):10-11.
[8]  WATANABE T, KIRON V, SATOH S. Trace minerals in fish nutrition[J]. Aquaculture, 1997, 151:185-207.
[9]  林仕梅,叶元土,罗莉,等.11种矿物质元素对草鱼生长的影响[J].水生生物学报,2002,26(增刊):75-81.
[10]  吕林,罗绪刚,计成.矿物元素影响畜禽肉质的研究进展[J].动物营养学报,2004,16(1):12-19.
[11]  HALLBERG L. Bioavailability of dietary iron in man[J]. Annual Review of Nutrition, 1981, 1:123-147.
[12]  HILTON J W. The interactions of vitamins, minerals and diet composition in the diet of fish[J]. Aquaculture, 1989, 79:223-244.
[13]  ASHMEAD H D. The roles of amino acids chelates in animal nutrition[M]. Park Ridge, NJ: Noyes Publications, 1992:479.
[14]  DAVIS D A, GATLIN Ⅲ D M. Dietary mineral requirements of fish and marine crustaceans[J]. Reviews in Fisheries Science, 1996, 4:75-99.
[15]  APINES-AMAR M J S, SATOH S, CAIPANG C M A, et al. Amino acid-chelate: a better source of Zn, Mn, and Cu for rainbow trout, Oncorhynchus mykiss[J]. Aquaculture, 2004, 240:345-358.
[16]  SAOUD I P, ROY L A, DAVIS D A. Supplementation of chelated potassium and arginine to diets of Litopenaeus vannamei reared in low salinity waters of west Alabama[J]. North American Journal of Aquaculture, 2007, 69:265-270.
[17]  PUCHALA R, SAHLU T, DAVIS J J. Effects of zinc-methionine on performance of Angora goats[J]. Small Ruminant Research, 1999, 33:1-8.
[18]  PARIPATANANONT T, LOVELL R T. Responses of channel catfish fed organic and inorganic sources of zinc to Edwardsiella ictaluri challenge[J]. Journal of Aquatic Aniamal Health, 1995, 7:147-154.
[19]  SATOH S, APINES M J, TSUKIOKA T, et al. Bioavailability of amino acids chelated and glass embedded manganese to rainbow trout, Oncorhynchus mykiss, fingerlings[J]. Aquaculture Research, 2001, 32:18-25.
[20]  COSSACK Z T. Somatomedin-C in zinc deficiency[J]. Experientia, 1984, 40:498-500.
[21]  MCNALL A D, ETHERTON T D, FOSMIRE G J. The impaired growth induced by zinc deficiency in rats is associated with decreased expression of the hepatic insulin-like growth factor Ⅰ and growth hormone receptorgenes[J]. Journal of Nutrition, 1995, 125:874-879.
[22]  MA Z J, YAMAGUCHI M. Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats[J]. Journal of Bone and Mineral Metabolism, 2001a, 19:38-44.
[23]  WEDEKIND K J, BAKER D H. Zinc bioavailability in feed-grade zinc sources[J]. Journal of Animal Science, 1989, 68:684-689.
[24]  WEDEKIND K J, HORTIN A E, BAKER D H. Methodology for assessing zinc bioavailability: efficacy for ZnMet, zinc sulfate and zinc oxide[J]. Journal of Animal Science, 1992, 70:178-187.
[25]  TAN B P, MAI K S. Zinc methionine and zinc sulfate as zinc sources of dietary zinc for abalone Haliotis discus hannai Ino[J]. Aquaculture, 2001, 192:67-84.
[26]  ASHMEAD H D. Unlocking reproductive potential in the sow with amino acid chelated elements: Proceed-ings of the Anaporcsymposium, Spain, 1996[C]. [S.l.]: [s.n.], 1996.
[27]  KIDD M T. Effect of zinc-methionine and manganese methionine on the performance and immune response of young turkeys[J]. Poultry Science, 1992(71):160.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133