全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胃肠营养化学感应及其生理效应

DOI: 10.3969/j.issn.1006-267x.2013.02.001

Keywords: 胃肠化学感应,营养感应受体,激素分泌,摄食,黏膜防御

Full-Text   Cite this paper   Add to My Lib

Abstract:

胃肠化学感应(chemosensing)是指胃肠道内分泌细胞功能与内脏迷走神经元之间复杂的相互作用。胃肠道内分泌细胞监测到管腔内容物后,释放信号分子,激活神经纤维或其他靶目标,产生生理效应。本文综述了胃肠营养化学感应受体和信号转导途径,阐述了胃肠道内分泌细胞碳水化合物、蛋白质和脂肪的感应机制及其在激素分泌、摄食和黏膜防御调控中的作用。

References

[1]  MIGUEL-ALIAGA I. Nerveless and gutsy:intestinal nutrient sensing from invertebrates to humans[J]. Seminars in Cell & Developmental Biology. doi:10. 1016/j. semcdb. 2012. 01. 002.
[2]  CHEN M C, WU V, REEVE J R, et al. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells:role of L-type voltage-sensitive Ca2+ channels[J]. American Journal of Physiology-Cell Physiology, 2006, 291:C726-C739.
[3]  CUMMINGS D E, OVERDUIN J. Gastrointestinal regulation of food intake[J]. Journal of Clinical Investigation, 2007, 117(1):13-23.
[4]  TOLHURST G, REIMANN F, GRIBBLE F M. Intestinal sensing of nutrients[M]//JOOST H G. Appetite control, handbook of experimental pharmacology. Verlag Berlin Heidelberg:Springer, 2012, 209:309-335.
[5]  REIMANN F, HABIB A M, TOLHURST G, et al. Glucose sensing in L cells:a primary cell study [J]. Cell Metabolism, 2008, 8:532 -539
[6]  DEZ-SAMPEDRO A, BARCELONA S. Sugar binding residue affects apparent Na+ affinity and transport stoichiometry in mouse sodium/glucose cotransporter type 3B[J]. Journal of Biological Chemistry, 2011, 286:7975-7982.
[7]  BENNETT K, JAMES C, HUSSAIN K. Pancreatic beta-cell KATP channels:hypoglycaemia and hyperglycaemia[J]. Reviews in Endocrine & Metabolic Disorders, 2010, 11:157-163.
[8]  MORGAN E L, MACE O J, AFFLECK J, et al. Apical GLUT2 and Cav1. 3:regulation of rat intestinal glucose and calcium absorption[J]. Journal of Physiology, 2007, 580:593-604.
[9]  KOKRASHVILI Z, RODRIGUEZ D, YEVSHAYEVA V, et al. Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5[J]. Gastroenterology, 2009, 137:598-606.
[10]  MARGOLSKEE R F, DYER J, KOKRASHVILI Z, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1[J]. Proceedings of the National Academy of Sciences, 2007, 104:15075-15080.
[11]  BARONE S, FUSSELL S L, SINGH A K, et al. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension[J]. Journal of Biological Chemistry, 2009, 284:5056-5066.
[12]  SOLEIMANI M. Dietary fructose, salt absorption and hypertension in metabolic syndrome:towards a new paradigm[J]. Acta Physiologica (Oxf), 2011, 201:55-62.
[13]  BROER S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands[J]. Pflugers Archiv:European Journal of Physiology, 2002, 444:457-466.
[14]  REIMANN F, WILLIAMS L, DA SILVA XAVIER G, et al. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells[J]. Diabetologia, 2004, 47:1592-1601.
[15]  TOLHURST G, ZHENG Y, PARKER H E, et al. Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP[J]. Endocrinology, 2011, 152:405-413.
[16]  NEMOZ-GAILLARD E, BERNARD C, ABELLO J, et al. Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells[J]. Endocrinology, 1998, 139:932-938.
[17]  CHOI S, LEE M, SHIU A L, et al. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2007, 292:G1366-G1375.
[18]  LIOU A P, SEI Y, ZHAO X, et al. The extracellular calcium sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2011, 300:538-546.
[19]  WANG Y, CHANDRA R, SAMSA L A, et al. Amino acids stimulate cholecystokinin release through the calcium-sensing receptor[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2010, 300:528-537.
[20]  REY O, YOUNG S H, JACAMO R, et al. Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition[J]. Journal of Cell Physiology, 2010, 225:73-83.
[21]  LI X, STASZEWSKI L, XU H, et al. Human receptors for sweet and umami taste[J]. Proceedings of the National Academy of Sciences, 2002, 99:4692-4696.
[22]  NELSON G, CHANDRASHEKAR J, HOON M A, et al. An amino-acid taste receptor[J]. Nature, 2002, 416:199-202.
[23]  LITTLE T J, FEINLE-BISSET C. Effects of dietary fat on appetite and energy intake in health and obesity—oral and gastrointestinal sensory contributions[J]. Physiology & Behavior, 2011, 104:613-620.
[24]  SIMONS P J, BOON L. Lingual CD36 and obesity:a matter of fat taste[J]Acta Histochemica, 2010, 113:765-767.
[25]  MARTIN C, CHEVROT M, POIRIER H, et al. CD36 as a lipid sensor[J]. Physiology & Behavior, 2011, 105:36-42.
[26]  RODRIGUEZ DE FONSECA F, NAVARRO M, GOMEZ R, et al. An anorexic lipid mediator regulated by feeding[J]. Nature, 2001, 414:209-212.
[27]  FU J, ASTARITA G, GAETANI S, et al. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine[J]. Journal of Biological Chemistry, 2007, 282:1518-1528.
[28]  JANG H J, KOKRASHVILI Z, THEODORAKIS M J, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1[J]. Proceedings of the National Academy of Sciences, 2007, 104:15069-15074.
[29]  TOLHURST G, REIMANN F, GRIBBLE F. Nutritional regulation of glucagon-like peptide-1 secretion[J]. Journal of Physiology, 2009, 87:27-32.
[30]  AZZOUT-MARNICHE D, GAUDICHON C, BLOUET C, et al. Liver glyconeogenesis:a pathway to cope with postprandial amino acid excess in high-protein fed rats[J]American Journal of Physiology:Regulatory, Integrative and Comparative Physiology, 2007, 292:1400-1407.
[31]  MEYER J H, HLINKA M, TABRIZI Y, et al. Chemical specificities and intestinal distributions of nutrient-driven satiety[J]. American Journal of Physiology, 1998, 275:1293-1307.
[32]  LE NEV B, DANIEL H. Selected tetrapeptides lead to a GLP-1 release from the human enteroendocrine cell line NCIH716[J]. Regulatory Peptides, 2011, 167:14-20.
[33]  MCLAUGHLIN J, GRAZIA LUC M, JONES M N, et al. Fatty acid chain length determines cholecystokinin secretion and effect on human gastric motility[J]. Gastroenterology, 1999, 116:46-53.
[34]  EDFALK S, STENEBERG P, EDLUND H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion[J]. Diabetes, 2008, 57:2280-2287.
[35]  IAKOUBOV R, IZZO A, YEUNG A, et al. Protein kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells[J]. Endocrinology, 2007, 148:1089-1098.
[36]  SUTHERLAND K, YOUNG R L, COOPER N J, et al. Phenotypic characterization of taste cells of the mouse small intestine[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007, 292:1420-1428.
[37]  MORAN T H, BALDESSARINT A R, SALORIO C F, et al. Vagal aferent and eferent contributions to the inhibition of food intake by CCK[J]. American Journal of Physiology, 1997, 272:1245-1251.
[38]  SMEETS A J, SOENEN S, LUSCOMBE-MARSH N D, et al. Energy expenditure, satiety, and plasma ghrelin, glucagon-like peptide 1, and peptide tyrosine-tyrosine concentrations following a single high-protein lunch[J]. The Journal of Nutriton, 2008, 138:698-702.
[39]  BATTERHAM R L, HEFFRON H, KAPOOR S, et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation[J]. Cell Metabolism, 2006(4):223-233.
[40]  ZHANG Y, GUO K, LEBLANC R E, et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms[J]. Diabetes, 2007, 56:1647-1654.
[41]  ROPELLE E R, PAULI J R, FERNANDES M F, et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss[J]. Diabetes, 2008, 57:594-605.
[42]  COTA D, PROULX K, SMITH K A, et al. Hypothalamic mTOR signaling regulates food intake[J]. Science, 2006, 312:927-930.
[43]  KAUNITZ J D, AKIBA Y. Duodenal carbonic anhydrase:mucosal protection, luminal chemosensing, and gastric acid disposal[J]. The Keio Journal of Medicine, 2006, 55:96-106.
[44]  NAYEB-HASHEMI H, KAUNITZ J D. Gastroduodenal mucosal defense[J]. Current Opinion in Gastroenterology, 2009, 25(6):537-543.
[45]  AKIBA Y, GHAYOURI S, TAKEUCHI T, et al. Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2 in rat duodenum[J]. Gastroenterology, 2006, 131:142-152.
[46]  LUDWIG M G, VANEK M, GUERINI D, et al. Proton-sensing G-protein-coupled receptors[J]. Nature, 2003, 425:93-98.
[47]  MOGI C, TOBO M, TOMURA H, et al. Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages[J]. Journal of Immunology, 2009, 182:3243-3251.
[48]  AKIBA Y, MIZUMORI M, GUTH P H, et al. Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology, 2007, 293:G1223-G1233.
[49]  UNEYAMA H, GABRIEL A S, KAWAI M, et al. Physiological role of dietary free glutamate in the food digestion[J]. Asia Pacific Journal of Clinical Nutrition, 17:372-375.
[50]  AKIBA Y, KAUNITZ J D. Luminal chemosensing and upper gastrointestinal mucosal defenses[J]. American Journal of Clinical Nutrition, 2009, 90:826-831
[51]  RAYBOULD H E. Gut chemosensing:interactions between gut endocrine cells and visceral afferents[J]. Auton Neurosci:Basic and Clinical, 2010, 153:41-46.
[52]  MCLNTYRE N, HOLDSWORTH C D, TURNER D S. New interpretation of oral glucose tolerance[J]. Lancet, 1964(2):1-20.
[53]  EGAN J M, MARGOLSKEE R F. Taste cells of the gut and gastrointestinal chemosensation[J]. Molecular Interventions, 2008, 8(2):78-81.
[54]  STERNINI C, ANSELMI L, ROZENGURT E. Enteroendocrine cells:a site of ''taste'' in gastrointestinal chemosensing[J]. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15(1):73-78.
[55]  FURNESS J B, KUNZE W A, CLERC N. Nutrient tasting and signaling mechanisms in the gut. Ⅱ. The intestine as a sensory organ:neural, endocrine, and immune responses[J]. American Journal of Physiology, 1999, 277:G922-G928.
[56]  HEDIGER M A, ROMERO M F, PENG J B, et al. The ABCs of solute carriers:physiological, pathological and therapeutic implications of human membrane transport proteins introduction[J]. Pflugers Archiv:European Journal of Physiology, 2004, 447:465-468.
[57]  GRIBBLE F, WILLIAMS L, SIMPSON A, et al. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line[J]. Diabetes, 2003, 52(5):1147-1154.
[58]  DEZ-SAMPEDRO A, HIRAYAMA A B, OSSWALD C, et al. A glucose sensor hiding in a family of transporters[J]. Proceedings of the National Academy of Sciences, 2003, 100:11753-11758.
[59]  RUSSELL H, PETER M T, HARINDER S H. Amino acid transporters:roles in amino acid sensing and signaling in animal cells[J]. Biochemical Journal, 2003, 373:1-18.
[60]  WELLENDORPH P, JOHANSEN L D, BRUNER-OSBORNE H. The emerging role of promiscuous 7TM receptors as chemosensors for food intake[J]. Vitam Horm, 2010, 84:151-184.
[61]  VILARDAGA J P, AGNATI L F, FUXE K, et al. G-protein-coupled receptor heteromer dynamics[J]. Journal of Cell Science, 2010, 123:4215-4220.
[62]  RITTER S L, HALL R A. Fine-tuning of GPCR activity by receptor-interacting proteins[J]. Nature Reviews Molecular Cell Biology, 2009, 10:819-830.
[63]  WELLENDORPH P, BURHENNE N, CHRISTIANSEN B, et al. The rat GPRC6A:cloning and characterization[J]. Gene, 2007, 396:257-267.
[64]  LIOU A P, LU X, SEI Y, et al. The gprotein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin[J]. Gastroenterology, 2011, 140:903-912.
[65]  PARKER H E, HABIB A M, ROGERS G J, et al. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells[J]. Diabetologia, 2009, 52:289-298.
[66]  MACE O J, AFFLECK J, PATEL N, et al. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2[J]. Journal of Physiology, 2007, 582:379-392.
[67]  CHEN X Z, COADY M J, JACKSON F, et al. Thermodynamic determination of the Na+:glucose coupling ratio for the human SGLT1 cotransporter[J]. Biophysical Journal, 1995, 69:2405-2414.
[68]  SCHWARTZ G J, FU J, ASTARITA G, et al. The lipid messenger OEA links dietary fat intake to satiety[J]. Cell Metabolism, 2008, 8:281-288.
[69]  REIMANN F. Molecular mechanisms underlying nutrient detection by incretin-secreting cells[J]. International Dairy Journal, 2010, 20:236-242.
[70]  HIRASAWA A, TSUMAYA K, AWAJI T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120[J]. Nature Medicine, 2005, 11:90-94.
[71]  KARAKI S, MITSUI R, HAYASHI H, et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine[J]. Cell and Tissue Research, 2006, 324:353-360.
[72]  NILSSON N E, KOTARSKY K, OWMAN C, et al. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids[J]. Biochemical and Biophysical Research Communications, 2003, 303:1047-1052.
[73]  OVERTON H A, BABBS A J, DOEL S M, et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents[J]. Cell Metabolism, 2006(3):167-175.
[74]  CHU Z L, CARROLL C, ALFONSO J, et al. A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release[J]. Endocrinology, 2008, 149:2038-2047.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133