全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代

, PP. 108-118

Keywords: 北喜马拉雅东段,金锑多金属矿床,成矿作用,矿床类型,成矿时代

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过大量详实的野外地质调查与综合研究,结合前人的研究成果,总结出北喜马拉雅东段金锑多金属矿带发育3期成矿作用(同沉积、同碰撞、陆内造山期)和5种矿床类型(喷流沉积-改造型、卡林型-类卡林型、热泉型、次火山岩浆热液型、造山型)。提出控矿“四要素”分布或叠加的地区,是北喜马拉雅地区最重要的找矿标志。指出羊卓雍错-哲古错被动大陆边缘裂谷(陷)盆地周缘的盆山转换部位是成矿有利部位,金矿床主要受近EW向拆离构造及其次级构造控制;锑、金锑多金属矿床主要受近SN向走滑正断系统及其次级构造控制,特别是EW向拆离系统与SN向走滑正断系统的交汇部位更是寻找锑、金锑多金属矿床的最有利部位。据此划分出3个受近SN向走滑正断层系统控制和2个受EW向拆离构造或韧-脆性剪切构造控制的矿化集中区,为该带进一步的找矿工作部署与突破指明了方向。

References

[1]  张宏飞, Harris N, Parrish R, 张利, 赵志丹, 李德威. 2005. 北喜马拉雅淡色花岗岩地球化学: 区域对比、岩石成因及其构造意义. 地球科学――中国地质大学学报, 30(3): 276?288.
[2]  张洪瑞, 侯增谦, 杨志明. 2010. 特提斯成矿域主要金属矿床类型与成矿过程. 矿床地质, 29(1): 113?133.
[3]  张建芳. 2010. 北喜马拉雅扎西康铅锌锑银矿床成因研究. 武汉: 中国地质大学(武汉)硕士学位论文: 85?88.
[4]  张进江, 杨雄英, 戚国伟, 王德朝. 2011. 马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用. 岩石学报, 27(12): 3535?3544.
[5]  Liu G and Einsele G. 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geologische Rundschau, 82: 32?61.
[6]  Melanie B W, Paul W L and Rainer J N. 2004. 40Ar/39Ar dating of Zn-Pb-Ag mineralization in the northern Brooks Range, Alaska. Economic Geology, 9: 1323?1343.
[7]  Moore D W, Young L E, Modene J S and Plahuta J T. 1986. Geologic setting and genesis of the Red Dog zinc-lead-silver deposit, western Brooks Range, Alaska. Economic Geology, 81: 1696?1727.
[8]  Neumayer J, Wisemayr G, Janda C and Grasemann B. 2004. Eohimalayan fold and thrust belt in the NW Himalaya (Lingti-Pin Vallleys): Shortening and depth to detachment calculation. Austrian Journal of Earth Sciences, 95/96: 28?36.
[9]  Pan G, Ding J and Yao D. 2004. Geological map of Qinghai-Xizang (Tibet) plateau and adjacent areas (1:1500000). Chengdu Institute of Geology and Mineral Resources, China Geological Survey. Chengdu: Chengdu Cartographic Publishing House.
[10]  Ratschbacher L, Frisch W, Liu G H and Chen C S. 1994. Distributed deformation in southern and western Tibet during and after the India-Asia collision. Journal of Geophysical Research, 99: 19817?19945.
[11]  Sch?rer U, Xu R H and Allegére C J. 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth and Planetary Science Letters, 77: 35?48.
[12]  Searle M P and Godin L. 2003. The South Tibetan Detachment system and the Manaslu leucogranite: A structural re-interpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. Journal of Geology, 111: 505?523.
[13]  Sun X, Zheng Y Y, Wu S, Li M, Oy H T and Geng R R. 2013. Mafic enclaves at Jiru porphyry Cu deposit, southern Tibet: Implication for the Eocene magmatic- hydrothermal Cu mineralization. Acta Geologica Sinica (English Edition), 87(supp.): 778?782.
[14]  李金高, 王全海, 陈健坤, 姚鹏, 彭勇民. 2002. 西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究. 成都理工学院学报, 29(5): 533?538.
[15]  聂凤军, 胡朋, 江思宏, 李振清, 刘妍, 周永章. 2005. 藏南地区金和锑矿床(点)类型及其时空分布特征. 地质学报, 79(3): 373?385.
[16]  聂凤军, 胡朋, 江思宏, 刘妍. 2006. 藏南邛多江地区二长花岗岩40Ar-39Ar同位素年龄及其地质意义. 岩石学报, 22(11): 2704?2710.
[17]  戚学祥, 李天福, 孟祥金, 于春林. 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用. 岩石学报, 24(7): 1638?1648.
[18]  孙晓明, 韦慧晓, 翟伟, 石贵勇, 梁业恒, 莫儒伟, 韩墨香, 张相国. 2010. 藏南邦布大型造山型金矿成矿流体地球化学和成矿机制. 岩石学报, 26(6): 1672? 1684.
[19]  韦慧晓, 孙晓明, 翟伟, 石贵勇, 梁业恒, 莫儒伟, 韩墨香, 易建洲 . 2010. 藏南邦布大型金矿成矿流体He- Ar-S同位素组成及其成矿意义. 岩石学报, 26(6): 1685?1691.
[20]  薛静, 戴塔根, 付松武, 马国秋, 黄伟盟. 2011. 广西武宣盘龙铅锌矿喷流沉积成矿作用: 稀土元素和硫同位素证据. 大地构造与成矿学, 35(3): 394?403.
[21]  杨竹森, 侯增谦, 高伟, 王海平, 李振清, 孟祥金, 曲晓明. 2006. 藏南拆离系锑金成矿特征与成因模式. 地质学报, 80(9): 1377?1391.
[22]  曾令森, 陈晶, 高利娥, 陈振宇. 2012. 藏南北喜马拉雅穹窿高Sr/Y二云母花岗岩中磷灰石地球化学特征及其岩石学意义. 岩石学报, 28(9): 2981?2993.
[23]  曾令森, 刘静, 高利娥, 谢克家, 文力. 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 54(03): 373?381.
[24]  张刚阳, 郑有业, 张建芳, 张苏坤, 樊子晖. 2011. 西藏沙拉岗锑矿控矿构造及成矿时代约束. 岩石学报, 27(7): 2144?2149.
[25]  张宏飞, Harris N, Parrish R, 张利, 赵志丹. 2004. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的U-Pb年龄及其地质意义. 科学通报, 49(20): 2090?2094.
[26]  郑有业, 王保生, 樊子珲, 张华平. 2002. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析. 地质科技情报, 21(2): 55?60.
[27]  郑有业, 赵永鑫, 王苹, 范文玉, 陈静, 曹新志, 张晓保. 2004a. 藏南金锑成矿带成矿规律研究及找矿取得重大进展. 地球科学――中国地质大学学报, 29(1): 44?68.
[28]  郑有业, 薛迎喜, 程力军, 樊子珲, 高顺宝. 2004b. 西藏驱龙超大型斑岩铜(钼)矿床: 发现、特征及意义. 地球科学――中国地质大学学报, 29(1): 103?108.
[29]  郑有业, 多吉, 马国桃, 陈静, 代芳华 . 2007a. 藏南查拉普岩金矿床特征、发现及时代约束. 地球科学――中国地质大学学报, 32(2): 185?193.
[30]  郑有业, 张刚阳, 许荣科, 高顺宝, 庞迎春, 曹亮, 杜安道, 石玉若. 2007b. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束. 科学通报, 52(21): 2542?2548.
[31]  郑有业, 刘敏院, 孙祥, 原恩会, 田立明, 郑海涛, 张刚阳, 张立华. 2012. 西藏扎西康锑多金属矿床类型、发现过程及意义. 地球科学――中国地质大学学报, 37(5): 1003?1014.
[32]  Aoya M, Wallis S R, Terada K, Lee J, Kawakam T, Yu W and Heizler M. 2005. North-south extension in the Tibetan crust triggered by granite emplacement. Geology, 33: 853?856.
[33]  Blisniuk P M, Hacher B R, Glodny J, Ratschbacher L, Bi S, Wu Z, McWilliams M O and Calvert A. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412: 628?632.
[34]  Blythe A E, Bird J M and Omar G I. 1996. Deformational history of the central Brooks Range, Alaska: Results from fission track and 40Ar/39Ar analyses. Tectonics, 15: 440?455.
[35]  Cameron S R and Paul W L. 2004. Geochronology of the western and central Brooks Range, Alaska: Implications for the geologic evolution of the Anarraaq and Red Dog Zn-Pb-Ag deposits. Economic Geology, 99: 1307?1322.
[36]  Coleman M and Hodges K. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east west extension. Nature, 374: 49?52.
[37]  Edwards M A and Harrison T M. 1997. When did the roof collapse? Late Miocene north south extension in the High Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite. Geology, 25: 543?546.
[38]  Garzanti E. 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences, 17: 805?827.
[39]  Harrison T M, Copeland P, Kidd W S F, Copeland P and Lovera M O. 1995. Activation of the Nyainqentanghla shear zone: Implications for uplift of the southern Tibetan plateau. Tectonics, 14: 658?676.
[40]  Harrison T M, Grove M, Lovera O M and Catlos E J. 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research, 103: 27017?27032
[41]  Harrison T M, Lovera O M and Grove M. 1997. New insights into the origin of two contrasting Himalayan granite belts. Geology, 25: 899?902.
[42]  Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society America Bulletin, 112: 324?350.
[43]  Hou Z Q and Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geology Reviews, 36: 2?24.
[44]  Hou Z Q, Gao Y F, Qu X M, Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives generated during mid- Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139?155.
[45]  Jiang S H, Nie F J, Hu P, Lai X R and Liu Y F. 2009. Mayum: An orogenic gold deposit in Tibet, China. Ore Geology Reviews, 36: 160?173.
[46]  Lee J, Hacker B R, Dinklage W S, Wang Y, Gans P, Calvert A, Wan J L, Chen W J, Blythe A E and McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural petrologic and thermochronologic constrains. Tectonics, 19: 872?895.
[47]  Lee J and Whitehouse M J. 2007. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology, 35: 45?48.
[48]  Lefort P, Yin A and Harrison T M. 1996. Evolution of the Himalaya. The tectonics of Asia. New York: Cambridge University Press: 95?106.
[49]  Wirth K R, Blythe A E, Bird J M and Heizler M T. 1993. Age and evolution of western Brooks Range ophiolites, Alaska: Results from 40Ar/39Ar thermochronometry. Tectonics, 12: 410?432.
[50]  Wu C D, Li J X, Wortman G, Nelson K D and Yue Y J. 1998. Yadong cross structure and South Tibetan detachment in the east-central Himalaya (89-90°E). Tectonics, 17: 28?45.
[51]  Xu R H. 1990. Age and geochemistry of granites and metamorphic rocks in south-central Xizang (Tibet) // Chinese Academy of Geological Sciences. Collection in Igneous and Metamorphic Rocks of the Tibetan Plateau. Beijing: Geological Publishing House: 287?302.
[52]  Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76: 1?131.
[53]  Yin A, Harrison T M, Murphy M A, Grove M, Nie S, Ryerson F J, Wang X F and Chen Z L. 1999. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geological Society of America Bulletin, 111: 1644?1664.
[54]  Zheng Y Y, Sun X, Gao S B, Zhao Z D, Zhang G Y, Wu S, You Z M and Li J D. 2014. Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential. Journal of Asian Earth Sciences, 79: 842?857.
[55]  Zhu D C, Chung S L, Mo X X, Zhao Z D, Niu Y L, Song B and Yang Y H. 2009. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present- day southeastern Tibet and southwestern Australia. Geology, 37(7): 583?586.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133