全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东亚降水中δ18O的GCM模拟及其与GNIP实测值的比较

Keywords: GCM,GNIP,稳定同位素,模拟,温度效应,降水量效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用引入稳定同位素循环的ECHAM4,GISSE,HadCM3和MUGCM模式的模拟对东亚降水中平均δ18O的空间分布、季节差异以及δ18O与温度、降水量的关系进行了分析。模拟结果很好地再现了由GNIP实测资料得到的δ18O的变化特征。在东亚,降水中δ18O的分布具有明显的纬度效应和高度效应。降水中δ18O季节差的最大值出现在受冷高压控制的东西伯利亚,最小值出现在受副热带高压控制的西太平洋。在海洋性气团与大陆性气团频繁交绥的中纬度地区,δ18O季节差相对较弱,但经向变化梯度较大。然而,4个GCM的模拟均显示在中高纬度内陆降水中δ18O明显偏低。温度效应主要出现在中高纬度和内陆区,纬度越高、越接近内陆,温度效应越强。降水量效应主要出现在中低纬度和季风区,最强的降水量效应出现在低纬度沿海或海岛。然而,4个GCM均给出实际上并不存在的发生在中亚干旱区的降水量效应。这个结果与雨滴在降落过程中重同位素的富集作用有关,但模式对该机制起到了放大作用。GCM和GNIP降水中δ18O统计量空间分布差异的一个显著特点是,GCM统计量的标准差大于GNIP统计量的标准差。然而,当对单站降水δ18O的时间序列作对比时,GCM模拟值的标准差反而小于GNIP实测值的标准差。

References

[1]  Dansgaard W. Stable isotopes in precipitation.Tellus,1964, 16 (4):436~468
[2]  Jouzel J. Isotopes in cloud physics: Multiphase and multistage condensation processes.In: Fritz P,Fontes J C eds.Handbook of Environmental Isotope Geochemistry.Amsterdam: Elsevier Science,1986.61~112
[3]  田立德,姚檀栋,余武生等.青藏高原水汽输送与冰芯中稳定同位素记录.第四纪研究,2006, 26 (2):145~152 浏览
[4]  Tian Lide,Yao Tandong,Yu Wusheng et al.Stable isotopes of precipitation and ice core on the Tibetan Plateau and moisture transports. Quaternary Sciences,2006, 26 (2):145~152
[5]  刘忠方,田立德,姚檀栋等.中国大气降水中δ18O的空间分布.科学通报,2009, 54 (6):804~811
[6]  Liu Zhongfang,Tian Lide,Yao Tandong et al.Spatial distribution of δ18O in precipitation over China.Chinese Science Bulletin,2009, 54 (6):804~811
[7]  Joussaume S, Sadourny R,Jouzel J.A general circulation model of water isotope cycles in the atmosphere.Nature,1984, 311 :24~29
[8]  Jouzel J, Russell G L,Suozzo R J.Simulations of the HDO and H2 18O atmospheric cycles using the NASA-GISS General Circulation Model——The seasonal cycle for present day conditions.Journal of Geophysical Research,1987, 92 (D12): 14739~14760,doi: 10.1029/JD092iD12p14739
[9]  Hoffmann G, Werner M,Heimann M.Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years.Journal of Geophysical Research,1998, 103 (D14): 16871~16896,doi: 10.1029/98JD00423
[10]  Lee J E, Fung I,DePaolo D J et al.Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model.Journal of Geophysical Research,2007, 112,D16306,doi: 10.1029/2006JD007657
[11]  Noone D C, Simmonds I.Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979~1995.Journal of Climate,2002, 15 : 3150~3169,doi: http://dx.doi.org/10.1175/1520-0442(2002)015<3150: ABOOWA>2.0.CO; 2 2.0.CO;2 target="_blank">
[12]  Vaughan J I. An Evaluation of Observed and Simulated High-resolution Records of Stable Isotopes in Precipitation.Melbourne: The Ph.D Thesis of University of Melbourne,2007.1~268
[13]  Schmidt G A, Hoffmann G,Shindell D T et al.Modelling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange.Journal of Geophysical Research,2005, 110,D21314,doi: 10.1029/2005JD005790
[14]  Schmidt G A, Ruedy R,Hansen J E et al.Present day atmospheric simulations using the GISS Model E: Comparison to in-situ,satellite and reanalysis data.Journal of Climate,2006, 19 : 153~192,doi: http://dx.doi.org/10.1175/JCLI3612.1
[15]  Tindall J C, Valdes P J,Sime L C.Stable water isotopes in HadCM3: Isotopic signature of El Ni?o -Southern Oscillation and the tropical amount effect.Journal of Geophysical Research,2009, 114 (D4),D04111,doi: 10.1029/2008JD010825
[16]  Rayner N A, Parker D E,Horton E B et al.Global analyses of sea surface temperature,sea ice,and night marine air temperature since the late Nineteenth Century.Journal of Geophysical Research,2003, 108 (D14),4407,doi: 10.1029/2002JD002670
[17]  http://www-naweb. iaea.org/napc/ih/GNIP/HIS_GNIP.html
[18]  Jouzel J, Koster R D,Suozzo R J et al.Simulations of the HDO and H2 18O atmospheric cycles using the NASA GISS GCM: Sensitivity experiments for present-day conditions.Journal of Geophysical Research,1991, 96 (D4): 7495~7507,doi: 10.1029/90JD02663
[19]  Merlivat L, Jouzel J.Global climatic interpretation of the deuterium-18O relationship for precipitation.Journal of Geophysical Research,1979, 84 (C8):5029~5033
[20]  Roeckner E, Oberhuber J M,Bacher A et al.ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM.Climate Dynamics,1996, 12 (11): 737~754,doi: 10.1007/s003820050140
[21]  Rasch P J, Williamson D L.Computational assessment of moisture transport in global models of the atmosphere.Quarterly Journal of the Royal Meteorological Society,1990, 116 (495): 1071~1090,doi: 10.1002/qj.49711649504
[22]  Cullen M, Davies T.A conservative split-explicit integration scheme with 4th-order horizonal advection.Quarterly Journal of the Royal Meteorological Society,1991, 117 (501): 993~1002,doi: 10.1002/qj.49711750106
[23]  Bourke W, McAvaney B,Puri K et al.Global modelling of atmospheric flow by spectral methods.In: Chang J ed.Methods in Computational Physics(General Circulation Models of the Atmosphere).Washington D C: Academic Press,1977.267~324
[24]  McAvaney B J, Bourke W,Puri K.A global spectral model for simulation of the general circulation.Journal of the Atmospheric Sciences,1978, 35 (9):1557~1583 2.0.CO;2 target="_blank">
[25]  Brown J. The Response of Stable Water Isotopes in Precipitation and the Surface Ocean to Tropical Climate Variability.Melbourne: The Ph.D Thesis of University of Melbourne,2003.1~254

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133