全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2007 

一种基于预报集合的降维资料同化方法的数值试验研究

DOI: 10.3878/j.issn.1006-9895.2007.04.12

Keywords: 降维,预报集合,资料同化,奇异值分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

对Qiu和Chou(2006)提出的一种基于预报集合的降维资料同化方法(4DSVD)给出了可行的实施方案,利用中尺度模式MM5产生的模拟资料进行数值试验并将其与MM5/3DVAR的同化结果进行比较,分析了不同的观测误差和观测点密度对同化结果的影响。试验表明:(1)和3DVAR相比该方法能更好地从有观测的变量推断无观测的变量(从温度的观测推测风和比湿);(2)该方法可以相当有效地滤除观测噪音;(3)该方法具有更好的将观测信息扩展到资料空缺地区的能力。

References

[1]  Evensen G.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.J.Geophys.Res.,1994,99 (C5):10143~10162
[2]  Courtier P,Andersson E,Heckley W,et al.The ECMWF implementation of three-dimensional variational assimilation (3D-Var).I:Formulation.Quart.J.Roy.Meteor.Soc.,1998,124 (550):1783~1807
[3]  Barker D M,Huang W,Guo Y-R,et al.A three-dimensional variational data assimilation system for MM5:Implementation and initial results.Mon.Wea.Rev.,2004,132:897~914
[4]  Lewis J M,Derber J C.The use of adjoint equations to solve a variational adjustment problem with advective constraints.Tellus,1985,37A:309~322
[5]  Le Dimet F X,Talagrand O.Variational algorithms for analysis and assimilation of meteorological observations:Theoretical aspects.Tellus,1986,38A:97~110
[6]  Talagrand O.Assimilateion of observations,an introducetion.J.Meteor.Soc.Japan,1997,75 (Special Issue) (No.1 B):81~99
[7]  Xu Q.Generalized adjoint for physical processes with parameterized discontinuities.Part Ⅰ:Basic issues and heuristic examples.J.Atmosp.Sci.,1996,53 (8):1123~1142
[8]  Xu Q,Qiu C J.Adjoint matching condition for parameterized discontinuities-A derivation using Lagrangian-form costfunction.Adv.Atmos.Sci.,1997,14 (1):49~52
[9]  Mu M,Wang J F.A method for adjoint variational data assimilation with physical "on-off" processes.J.Atmos.Sci.,2003,60 (16):2010~2018
[10]  Burgers G,van Leeuwen P J,Evensen G.Analysis scheme in the ensemble Kalman filter.Mon.Wea.Rev.,1998,126:1719~1724
[11]  Houtekamer P L,Mitchell H L.A sequential ensemble Kalman filter for atmospheric data assimilation.Mon.Wea.Rev.,2001,129:123~137
[12]  Evensen G.The ensemble Kalman filter:Theoretical formulation and practical implementation.Ocean Dyn.,2003,53:343~367
[13]  许小永,刘黎平,郑国光.集合卡尔曼滤波同化多普勒雷达资料的数值试验.大气科学,2006,30 (4):712~728 Xu Xiaoyong,Liu Liping,Zheng Guoguang.Numerical experiment of assimilation of Doppler radar data with an ensemble Kalman fileter.Chinese Journal of Atmospheric Science (in Chinese),2006,30 (4):712~728
[14]  Li J P,Chou J F.Existence of atmosphere attractor.Science in China (Ser.D),1997,40 (2):215~224
[15]  Osborne A R,Pastorello A.Simultaneous occurrence of low-dimensional chaos and colored random noise in nonlinear physical system.Physics Letters A,1999,181:159~171
[16]  Qiu C,Chou J.Four-dimensional data assimilation method based on SVD:Theoretical aspect.Theor.Appl.Climatol.,2006,83:51~57
[17]  Dudhia J.A nonhydrostatic version of the Penn State/NCAR mesoscale model:Validation tests and simulations of an Atlantic cyclone and cold front.Mon.Wea.Rev.,1993,121:1493~1513
[18]  Barker D M,Huang W,Guo Y R,et al.A three-dimensional variational (3DVAR) data assimilation system for use with MM5.NCAR Tech.Note.NCAR/TN-453 + STR,2003,68 pp
[19]  Parrish D F,Derber J C.The National Meteorological Center\'s spectral statistical interpolation analysis system.Mon.Wea.Rev.,1992,120:1747~1763
[20]  Hayden C M,Purser R J.Recursive filter objective analysis of meteorological fields:Applications to NESDIS operational processing.J.Appl.Meteor.,1995,34:3~15

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133