全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

川西坳陷鸭子河地区基于多种古温标的钻井热史恢复

DOI: 10.6038/cjg20151019, PP. 3660-3670

Keywords: 镜质体反射率,磷灰石裂变径迹,伊利石结晶度,热史恢复,川西坳陷

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用镜质体反射率(Ro)、磷灰石裂变径迹(AFT)和伊利石结晶度(IC指数)等古温标恢复了四川盆地川西坳陷的钻井热史,对比了不同温标最高古地温的恢复结果.研究表明,研究区晚白垩世至今总体表现为冷却及抬升剥蚀的过程,地温梯度由约26℃·km-1降低至约22℃·km-1,剥蚀量约1.3~1.9km.约80Ma以来开始抬升剥蚀,40—2.5Ma经历了一个热平静期,第四纪存在一定的增温,地温梯度增高约5℃·km-1.三种古地温恢复结果具有较高的一致性,相对于镜质体反射率(Ro)和磷灰石裂变径迹(AFT)等成熟古温标,伊利石结晶度作为有机质成熟度指标和沉积岩古温标的应用处于定性分析阶段,该指标的热演化模型仍需进一步探索.

References

[1]  Aldega L, Cello G, Corrado S, et al. 2003. Tectono-sedimentary evolution of the Southern Apennines (Italy): thermal constraints and modelling. Atti Ticinensi di Scienze Della Terra, 9: 135-140.
[2]  Antia D D J. 1986. Kinetic method for modeling vitrinite reflectance. Geology, 14(7): 606-608.
[3]  Arkai P, Sassi F P, Desmons J. 2002. Towards a unified nomenclature in metamorphic petrology: 4. Very low-to low-grade metamorphic rocks. A proposal on behalf of the IUGS subcommission on the systematics of metamorphic rocks. Web version of 31.10: 1-12.
[4]  Armagnel C, Bucci J, St Kendall G C, et al. 1989. Estimating the thickness of sediment removed at an unconformity using vitrinite reflectance data.//Naeser N D, McCulloh T H. Thermal History of Sedimentary Basins. New York: Springer-Verlag, Inc., 217-238.
[5]  Armstrong P A, Kamp P J J, Allis R G, et al. 1997. Thermal effects of intrusion below the Taranaki Basin (New Zealand): evidence from combined apatite fission track age and vitrinite reflectance data. Basin Research, 9(2): 151-169.
[6]  Armstrong P A. 2005. Thermochronometers in Sedimentary Basins. Reviews in Mineralogy and Geochemistry, 58(1): 499-525.
[7]  Bi X M, Mo X X. 2004. Transition from diagenesis to low-grade metamorphism and related minerals and energy resources. Earth Science Frontiers (in Chinese), 11(1): 287-294.
[8]  Bignall G, Tsuchiya N, Browne P R L. 2001. Use of illite crystallinity as a temperature indicator in the Orakei Korako geothermal system, New Zealand. Transactions-Geothermal Resources Council, 25: 339-344.
[9]  Braun R L, Burnham A K. 1987. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy & Fuels, 1(2): 153-161.
[10]  Burnham A K, Braun R L, Gregg H R, et al. 1987. Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Energy & Fuels, 1(6): 452-458.
[11]  Burnham A K, Oh M S, Crawford R W, et al. 1989. Pyrolysis of Argonne premium coals: activation energy distribution and related chemistry. Energy & Fuels, 3(1): 42-55.
[12]  Burnham A K, Sweeney J J. 1989. A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657.
[13]  Chen D X, Huang X H, Li L T, et al. 2010. Characteristics and history of hydrocarbon expulsion of the Upper Tertiary source rocks in the western Sichuan Depression. Natural Gas Industry (in Chinese), 30(5): 41-45.
[14]  Chen Y. 2011. The formation of western Sichuan foreland basin and its significance in oil-gas exploration during late Triassic. Chengdu: Chengdu University of Technology.
[15]  Chen Y C, Shen Z M, Luo X P. 2007. Oil and Gas Organic Geochemistry (in Chinese). Beijing: Sciences Press.
[16]  Cooper B S. 1977. Estimation of the maximum temperature attained in sedimentary rocks.//Developments in Petroleum Geology. London: Applied Science Publications, 127-146.
[17]  Corrigan J. 1991. Inversion of apatite fission track data for thermal history information. Journal of Geophysical Research, 96(B6): 10347-10360.
[18]  Di L P. 2003. Use of clay mineralogy in reconstructing geological processes; thermal constraints from clay minerals. AttiTicinensi di Scienze della Terra, 9: 55-67.
[19]  Duddy I R, Green P F, Laslett G M. 1988. Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour. Chemical Geology, 73(1): 25-38.
[20]  Fitzgerald P G, Gleadow A J W. 1990. New approaches in fission track geochronology as a tectonic tool: Examples from the transantarctic mountains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3): 351-357.
[21]  Fitzgerald P G, Stump E, Redfield T F. 1993. Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology. Science, 259(5094): 497-499.
[22]  Qin J Z, Teng G E, Yang Q, et al. 2009b. Research on maturity indicators of high-maturity marine strata in the eastern Sichuan Basin. Acta Petrolei Sinica (in Chinese), 30(2): 208-213.
[23]  Qiu N S, Hu S B, He L J. 2004. Theory and Application of the Sedimentary Basins Thermal Regime Research (in Chinese). Beijing: Petroleum Industry Press.
[24]  Qiu N S, Li H L, Jin Z J. 2005. Study of the thermal history reconstruction for Lower Paleozoic carbonate succession. Earth Science Frontiers (in Chinese), 12(4): 561-567.
[25]  Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10): 1559-1570.
[26]  Tao X F. 1999. Evolution of nappe tectonic and foreland basin in the southern section of Longmen mountains. Journal of Chengdu University of Technology (in Chinese), 26(1): 73-77.
[27]  Tian Y T, Kohn B P, Gleadow A J W, et al. 2013. Constructing the Longmen Shan eastern Tibetan Plateau margin: Insights from low-temperature thermochronology. Tectonics, 32(3): 576-592.
[28]  Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence. New York: Springer Verlag.
[29]  Tissot B P, Pelet R, Ungerer P. 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin, 71(12): 1445-1466.
[30]  Wang H J, Zhu M X, Xu Q S, et al. 2000. Relationship between slit system and the Kübler index of illite crystal unity and discussion on relevant problems. Geological Review (in Chinese), 46(6): 588-593.
[31]  Waples D W. 1980. Time and temperature in petroleum formation: Application of Lopatin''s method to petroleum exploration. AAPG Bulletin, 64(6): 916-926.
[32]  Wang H J, Tao X F, Rahn M. 2007. Some aspects of illite crystallinity and its applications in low temperature metamorphism. Earth Science Frontiers (in Chinese), 14(1): 151-156.
[33]  Wang H J. 1998. On the error calculation of the Kübler index of illite crystallinity. Geological Review (in Chinese), 44(3): 328-335.
[34]  Wang J. 1996. Geothermics in China. Beijing: Seismological Press.
[35]  Wang Q. 2007. Clay minerals research and application: as geothermometers (in Chinese). Qingdao: China University of Petroleum.
[36]  Wang T Z. 1997. Significance of Longmenshan thrust in evolution and oil-gas exploration of western Sichuan basin. Geoscience (in Chinese), 11(4): 496-500.
[37]  Wang Z C, Zhao W Z, Zhang L, et al. 2002. Structural Sequence and Natural Gas Exploration of the Sichuan Basin (in Chinese). Beijing: Geological Publishing House.
[38]  Xu C H, Zhu G, Liu G S, et al. 2005. Application of Crystallinity of Illite to Recover Denudation Quantity: An example of cretaceous denudation quantity recovery of well Ancan 1 in Hefei basin, Anhui province. Geological Science and Technology Information (in Chinese), 24(1): 41-44.
[39]  Xu M, Zhu C Q, Tian Y T, et al. 2011. Borehole temperature logging and characteristics of subsurface temperature in the Sichuan Basin. Chinese J. Geophys. (in Chinese), 54(4): 1052-1060.
[40]  Yang K M, Zhu T, He L. 2003. Structural characteristics and exploration potential of the thrust block in Longmenshan. Petroleum Geology & Experiment (in Chinese), 25(6): 685-700.
[41]  Yang X Z. 1993. Illite crystallinity and its geological significances. Acta Sedimentologica Sinaca (in Chinese), 11(4): 92-98.
[42]  You J C, Bi X M, Hou C M. 2008. Calibration of illite crystallinity measurements by using international standards and its significance. Geosciences (in Chinese), 22(1): 53-59.
[43]  Zhang Y G, Ma Z J, Yang K M, et al. 2007. The forecast of natural oil & gas potential in marine strata, western Sichuan basin, southwest China. Acta Geologica Sinica (in Chinese), 81(8): 1041-1047.
[44]  Zhao J C, Liu S G, Sun W, et al. 2011. Analysis on petroleum preservation condition in the coupling area between Longmen Mountain and Sichuan Basin. Lithologic Reservoirs (in Chinese), 23(1): 79-85, 89.
[45]  Zhou J G. 2006. Analysis of Early-Cenozoic Prototype Basin and its structural thermal evolution characteristic study of Jiyang-Changwei depression (in Chinese). Beijing: Graduate University of China Academy of Sciences.
[46]  Zhu G. 1995. Grading the extreme-low metamorphic clastic sedimentary rocks by the crystallinity of the illite. Petroleum Exploration and Development (in Chinese), 22(1): 33-34.
[47]  Zhu L, Zhu M. 2006. Thermal evolution stages for mesozoic strata in the Hefei basin: contstraints from illite crystallinity. Geology of Anhui (in Chinese), 16(3): 169-172, 176.
[48]  Zhu T, Liang E Y. 2001. Discussion on oil and gas exploration of Xujiahe group in Yazi River structure of the middle Longmenshan in western Sichuan. Journal of Chengdu University of Technology (in Chinese), 28(1): 59-63.
[49]  Gleadow A J W, Duddy I R, Lovering J F. 1983. Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Australian Petroleum Exploration Association Journal, 23: 93-102.
[50]  Gleadow A J W, Fitzgerald P G. 1987. Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth and Planetary Science Letters, 82(1-2): 1-14.
[51]  Gleadow A J W. 1981. Fission-track dating methods: What are the real alternatives. Nuclear Tracks, 5(1-2): 3-14.
[52]  Gong Y L, Wang L S, Liu S W, et al. 2003. Distribution characteristics of geotemperature field in Jiyang depression, Shandong, north China. Chinese J. Geophys. (in Chinese), 46(5): 652-658.
[53]  Green P F, Duddy I R, Gleadow A J W, et al. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology, 59: 237-253.
[54]  Green P F, Duddy I R, Laslett G M, et al. 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology, 79(2): 155-182.
[55]  Guo Z W, Deng K L, Han Y H, et al. 1996. Formation and Evolution of the Sichuan Basin (in Chinese). Beijing: Geological Publishing House.
[56]  Guthrie G M, Houseknecht D W, Johns W D. 1986. Relationships among vitrinite reflectance, illite crystallinity, and organic geochemistry in Carboniferous strata, Ouachita mountains, Oklahoma and Arkansas. AAPG Bulletin, 70(1): 26-33.
[57]  Hood D, Gutjahr C C M, Heacock R L. 1975. Organic metamorphism and the generation of petroleum. AAPG Bulletin, 59(6): 986-996.
[58]  Hu D Q, Han C Y, Ma R, et al. 2012. The very low grade metamorphism in the Upper Paleozoic in Xinlingol area of Inner Mongolia, NE China: Evidence from studies of illite and vitrinite reflectance. Acta Petrologica Sinica (in Chinese), 28(9): 3042-3050.
[59]  Hu S B, Zhang R Y, Zhou L C. 1998. Reconstruction of geothermal history in hydrocarbon basins. Petroleum Explorationist (in Chinese), 3(4): 52-54.
[60]  Hu S B, He L J, Zhu C Q, et al. 2008. Method system of thermal reconstruction for marine basins. Oil and Gas Geology (in Chinese), 29(5): 607-613.
[61]  Ji J F, Browne P R L. 2000. Relationship between illite crystallinity and temperature in active geothermal systems of New Zealand. Clays and Clay Minerals, 48(1): 139-144.
[62]  Jiang H C, Xiao Y J, Zhou L. 2008. Analysis of Cenozoic subsurface temperatures of the Jiyang depression. Geology in China (in Chinese), 35(2): 273-278.
[63]  Ketcham R A, Carter A, Donelick R A, et al. 2007. Improved modeling of fission-track annealing in apatite. Am. Mineral., 92(5-6): 799-810.
[64]  Kübler B. 1964. Les argiles, indicateurs de métamorphisme. Rev. Inst. Franc. Petrole Ann. Combüst., 19: 1093-1112.
[65]  Kübler B. 1967. La cristallinite de I''illite et les zones tout a fait superieures du métamorphisme. Etages tectoniques. Colloque de Neuchatel, 105-121.
[66]  Kübler B. 1968. évaluationqunaittative du métamorphismepar la cristallinitE de I''illité. Bulletin du Centre de Recherehes de pua-SNAP, 2: 385-397.
[67]  Lerche I, Yarzab R F, St C Kendall C G. 1984. Determination of paleoheat flux from vitrinite reflectance data. AAPG Bulletin, 68(11): 1704-1717.
[68]  Li J W, Qiu N S, Mei Q H, et al. 2011. Study on measuring the highest rock paleotemperature with thermo-acoustic emission. Chinese J. Geophys. (in Chinese), 54(11): 2898-2905.
[69]  Li T Y, Zhou Y, Fang S, et al. 2013. A new method for apatite fission track dating—the Laser-ICPMS method. Oil & Gas Geology (in Chinese), 34(4): 550-557.
[70]  Li Z W, Liu S G, Chen H D, et al. 2011. Structural superimposition and conjunction and its effects on hydrocarbon accumulation in the Western Sichuan Depression. Petroleum Exploration and Development (in Chinese), 38(5): 538-551.
[71]  Liu D C, Li S S, Zhou Z J, et al. 2002. Oil and gas exploration target selection and evaluation of the Xujiahe formation in the Yazi River structure. Natural Gas Exploration and Development (in Chinese), 25(1): 38-45.
[72]  Liu D H, Xiao X M, Tian H, et al. 2013. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications. Chinese Science Bulletin, 58(11): 1285-1298.
[73]  Liu H P, Li J M, Li X Q, et al. 2006. Evolution of cratonic basins and carbonate-evaporite sedimentary sequence hydrocarbon systems in China. Geoscience (in Chinese), 20(1): 1-18.
[74]  Liu J H, Yang S C, Zhang S Q, et al. 2010. A study on the characters of the accommodation change and hydrocarbon in Upper Xujiahe formation in the Western Sichuan Basin. Geological Review (in Chinese), 56(2): 275-282.
[75]  Liu S G, Yang R J, Wu X C, et al. 2009. The Late Triassic transition from marine carbonate rock to clastics in the western Sichuan Basin. Oil & Gas Geology (in Chinese), 30(5): 556-565.
[76]  Liu S G, Deng B, Li Z W, et al. 2011. The texture of sedimentary basin-orogenic belt system and its influence on oil-gas distribution: A case study from Sichuan basin. Acta Petrologica Sinica (in Chinese), 27(3): 621-635.
[77]  Lopatin N V. 1971. Temperature and geological time as factors of carbonification. Akademy Nauk SSSR Izvestias Serie Geologia, 3: 95-106.
[78]  Ma C, Browne P R L, Harvey C C. 1992. Crystallinity of subsurface clay minerals in the Te Mihi Sector of the Wairakei geothermal system, New Zealand.//Proc. 14th New Zealand Geothermal Workshop, 267-272.
[79]  Ma Y S, Chen D H, Wang G L, et al. 2009. Sequence Stratigraphy and Paleogeography in Southern China (in Chinese). Beijing: Science Press.
[80]  Miller S, Macdonald D I M. 2004. Metamorphic and thermal history of a fore-arc basin: the Fossil Bluff Group, Alexander Island, Antarctica. Journal of Petrology, 45(7): 1453-1465.
[81]  Morgan P. 1984. The thermal structure and thermal evolution of the continental lithosphere. Phys. Chem. Earth,15: 107-193.
[82]  Qin J Z, Li Z M, Teng G E. 2009a. A study on paleo-geothermometer of high mature marine sequences in South China. Oil & Gas Geology (in Chinese), 30(5): 608-618.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133