全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进UKF算法在移动机器人定位系统中的应用

DOI: 10.3969/j.issn.1006-7043.201112002

Keywords: 改进的UKF算法, 最小偏度采样, 衰减记忆, 定位算法, 移动机器人

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决移动机器人室内定位误差较大的问题,提出一种将最小偏度采样策略和衰减记忆滤波相结合的改进UKF(unscented Kalman filter)算法.该算法采用最小偏度采样策略,采样点个数??由2n+1减少到n+2,??提高了定位实时性;采用衰减记忆平方根滤波修正量测噪声的权值,避免滤波发散,提高了系统鲁棒性.构建无线局域网定位系统,使用改进的UKF算法对获得的无线信号 (RSSI值)进行滤波.采用三边定位法进行定位计算.实验结果表明,系统平均定位误差降低49%,达到0.505 m,可较好地实现机器人的精确定位,满足移动机器人的室内定位要求.

References

[1]  MA Xudong, DAI Xianzhong, SHANG Wen. Vision-based extended Monte Carlo localization for mobile robot[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation.[s.l], 2005.
[2]  XU Zezhong, LIU Jilin, XIANG Zhiyu. Map building and localization using 2D range scanner[C] //Proceedings of the 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Kobe, Japan, 2003.
[3]  BUGARD W, DERR A, FOX D, et al. Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach[C] //Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems.Victoria B C,Canada,1998.
[4]  PORTA J M, KROSE B J A. Apppearance-based concurrent map building and localization using a multi-hypotheses tracker[C] //Proceedings of 2004 IEEE/RSJ International Conerence on Intelligent Robots and Systems. Sendai, Japan, 2004.
[5]  海丹, 李勇, 张辉, 等. 无线传感器网络环境下基于粒子滤波的移动机器人SLAM 算法[J]. 智能系统学报, 2010, 5(5): 425-431. HAI Dan, LI Yong, ZHANG Hui, et al. Simultaneous localization and mapping of a mobile robot in wireless sensor networks based on particle filtering[J]. CAAI Transactions on Intelligent Systems, 2010, 5(5): 425-431.
[6]  夏琳琳, 张健沛, 初妍. 计算智能在移动机器人路径规划中的应用综述[J]. 智能系统学报, 2011, 6(2): 160-165. XIA Linlin, ZHANG Jianpei, CHU Yan. An application survey on computational intelligence for path planning of mobile robots[J]. CAAI Transactions on Intelligent Systems, 2011, 6(2): 160-165.
[7]  陶辉,吴怀宇,程磊,等. 轮式移动机器人FastSLAM算法研究[J]. 哈尔滨理工大学学报, 2011, 16(1): 42-47. TAO Hui, WU Huaiyu, CHENG Lei, et al. The research of wheeled mobile robot FastSLAM algorithm[J]. Journal of Harbin University of Science and Technology, 2011, 16(1): 42-47.
[8]  JULIER S J,UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear systems[C]// Proceedings of American Control Conference. [s.l.], 1995.
[9]  刘丽雯,张崇巍,徐玉华,等. 基于UKF的室内移动机器人定位问题[J].合肥工业大学学报:自然科学版, 2009, 32(1):9-13. LIU Liwen, ZHANG Chongwei, XU Yuhua,et al. SLAM of indoor mobile robots based on the Unscented Kalman Filter[J].Journal of Hefei University of Technology, 2009, 32(1):9-13.
[10]  李丹,刘建业,熊智,等. 基于最小偏度采样的卫星自主导航SRUKF算法[J].南京航空航天大学学报,2009, 41(1):54-58. LI Dan, LIU Jianye, XIONG Zhi, et al. Square root unscented Kalman filter for satellite autonomous navigation system based on minimal skew simplex transformation[J]. Journal of Nanjing University of Aeronautics & Astronautics,2009,41(1):54-58.
[11]  姜雪原,马广富,胡庆雷.改进型UKF滤波算法的卫星姿态估计[J].哈尔滨工程大学学报, 2005, 26(4): 544-549. JIANG Xueyuan, MA Guangfu, HU Qinglei. Modified unscented Kalman filter for satellite attitude estimation[J]. Journal of Harbin Engineering University, 2005, 26(4):544-549.
[12]  刘海洋,杨乐,陈杰.改进无色卡尔曼滤波算法在GPS 系统中的应用[J].系统仿真学报, 2009, 21(15): 4859-4865. LIU Haiyang, YANG Le, CHEN Jie. Application of modified unscented Kalman filter algorithm in GPS system[J]. Journal of System Simulation, 2009, 21(15): 4859-4865.
[13]  罗涌,钟洪声.一种改进的UKF算法在目标跟踪系统建模中的应用[J].遥测遥控, 2008, 29(1): 55-58. LUO Yong, ZHONG Hongsheng. An improved UKF algorithm and its application in target tracking[J]. Journal of Telemetry, Tracking and Command, 2008, 29(1): 55-58.
[14]  章飞,周杏鹏,陈小惠.基于衰减记忆滤波的平方根UKF被动目标跟踪算法[J].测控技术, 2010, 29(4):22-26. ZHANG Fei, ZHOU Xingpeng, CHEN Xiaohui. Square-root UKF passive target tracking algorithm based on memory attenuation filtering[J].Measurement and Control Technology, 2010, 29(4): 22-26.
[15]  JULIER S U, DURRANT W H F. A new method for the nonlinear transformation of means and covariance in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3):4777-482.
[16]  秦永元,张洪钺.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2010:88-92. QIN Yongyuan, ZHANG Hongyue. Kalman filter and principle of integrated navigation[M]. Xi’an: Northwestern Polytechnical University Press, 2010: 88-92.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133