HAMILTON W R. On a general method in dynamics[J]. Philosophical Transactions of the Royal Society, 1834(Part I): 247-308, 1835(Part II): 95-144.
[3]
汪家?.分析动力学[M].北京:高等教育出版社, 1958: 426-487.
[4]
沈惠川. 弹性力学的Lagrange形式:用Routh方法建立弹性有限变形问题的基本方程[J]. 数学物理学报,1998,18(1): 78-88.SHEN Huichuan. Lagrange formalism of elasticity: building the basic equations on finite-deformation problems by Routh’s method [J]. Acta Mathematica Scientia, 1998, 18(1): 78-88.
[5]
缪炳祺,曲广吉,夏邃勤,等. 柔性航天器动力学建模的伪坐标形式Lagrange方程[J].中国空间科学技术, 2003(2): 1-5, 57.MIAO Bingqi, QU Guangji, XIA Suiqin, et al. Lagrange’s equations in quasicoordinates for dynamics modeling of flexible spacecraft[J]. Chinese Space Science and Technology, 2003(2):1-5, 57.
[6]
SOUCHET R. Continuum mechanics and Lagrange equations with generalised coordinates[J]. International Journal of Engineering Science, 2014, 76: 27-33.
[7]
HERBERT G., CHARLES P, JOHN S. Classical Mechanics [M]. 3rd ed. Beijing:Higher Education Press, 2005: 449-600.
[8]
LIANG Lifu, SHI Zhifei. On the inverse problem in calculus of variations[J]. Applied Mathematics and Mechanics, 1994, 15(9): 815-830.
[9]
LIANG Lifu, HU Haichang. Generalized variational principle of three kinds of variables in general mechanics[J]. Science in China (A), 2001, 44(6): 770-776.
[10]
梁立孚.变分原理及其应用[M]. 哈尔滨:哈尔滨工程大学出版社, 2005: 序言1-2.
[11]
LIANG Lifu, SONG Haiyan. Non-linear and non- conservative quasi-variational principle of flexible body dynamics and application in spacecraft dynamics[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(11): 2192-2199.