全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于空域滤波的核RX高光谱图像异常检测算法

DOI: 10.369/j.issn.1006-7043.2009.06.020

Keywords: 高光谱 异常检测 非线性 RX 核函数 空域滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

核RX算法将原始高光谱数据通过非线性映射到高维特征空间进行处理,具有很好的非线性异常检测性能,但当背景数据中混入异常点后背景核矩阵将发生退化,使得漏检率上升.针对此问题,该文提出一种基于空域滤波的核RX算法,利用高光谱图像同一波段相邻像素的空间相关性,采用分波段空域滤波的方式优化背景数据的分布,抑制了异常数据对背景的干扰,构造更加符合背景分布的核矩阵,有效提高检测概率的同时降低了虚警概率.通过试验模拟数据和真实AVIRIS数据的测试检验,说明该算法性能优于传统RX算法以及核RX算法.

References

[1]  1. CHEIN-I C.MINGKAI H Characterization of anomaly detection in hyperspectral imagery 2006(2)
[2]  5. THORNTON S S.MOURA J M Performance analysis of the adaptive GMRF anomaly detector for hyperspectral imagery 2000
[3]  6. BASENER B.IENTILUCCI E J.MESSINGER D W Anomaly detection using topology 2007
[4]  ?7. SCHAUM A Spectral subspace matched filtering 2001
[5]  8. HARSANYI J C.CHANG C I I-lyperspectral image classification and dimensionality reduction:an orthogonal subspace projection approach 1994(4)
[6]  9. REED I S.YU X Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution 1990(10)
[7]  10. WEIMIN L.CHEIN-I C A nested spatial window-based approach to target detection for hyperspectral imagery 2004
[8]  2. CATTERALL S P Anomaly detection based on the statistics of hyperspectral imagery 2004
[9]  ?3. CLARE P E.BERNHARDT M.OXFORD W J A new approach to anomaly detection in hyperspectral images 2003
[10]  4. HYTLA P.HARDIER C.EISMANN M T Anomaly detection in hyperspectral imagery:A comparison of methods using seasonal data 2007
[11]  11. HEESUNG K.NASRABADI N M Kernel RX-algorithm:a nonlinear anomaly detector for hyperspectral imagery 2005(2)
[12]  12. RUIZ A.LOPEZ-DE-TERUEL P E Nonlinear kernelbased statistical pattern analysis 2001(1)
[13]  13. SCHOLKOPF B.SMOLA A J.MULLER K Nonlinear component analysis as a kernel eigenvalue problem 1998(5)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133