全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

输入受限线性系统鲁棒抗饱和控制

DOI: doi:10.3969/j.issn.1006-7043.2010.12.009

Keywords: 鲁棒性, 抗饱和, 饱和非线性, 积分二次型约束, 线性矩阵不等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对抗饱和控制的鲁棒性问题,将研究扩展到对输入饱和非线性、时变参数和动态不确定性具有结构摄动的鲁棒性框架内,给出了一种线性时不变系统鲁棒抗饱和控制算法.鉴于积分二次型约束具有刻画结构不确定性的能力,选择在积分二次型约束框架下解决问题.以定标的线性矩阵不等式形式给出了系统分析和控制综合条件.飞行控制仿真结果说明此算法不仅可以成功克服饱和非线性,且对时变参数和动态不确定性具有良好的鲁棒性.

References

[1]  杨明,徐殿国,贵献国. 控制系统Anti?Windup设计综述 [J]. 电机与控制学报, 2006, 10(6): 622-626. ?YANG Ming,XU Dianguo,GUI Xianguo.Review of control system Anti?Windup design[J].Electric Machines and Control,2006,10(6):622-626. ?
[2]  KOTHARE M V, CAMPO P J, MORARI M, NETT C N. A unified framework for the anti?windup designs[J]. Automatica, 1994, 30(12): 1869-1883.?
[3]  KOTHARE M V, MORARI M. Multiplier theory for stability analysis of anti?windup control systems[J]. Automatica, 1999, 35(5): 917-928.?
[4]  MULDER E F, KOTHARE M V, MORARI M. Multivariable anti?windup controller synthesis using linear matrix inequalities[J]. Automatica, 2001, 37(9): 1407-1416.?
[5]  GRIMM G, HATFIELD J, POSTLETHWAITE I, TEEL A R, et al. Antiwindup for stable linear systems with input saturation: a LMI?based synthesis[J]. IEEE Trans Automat Control, 2003, 48(9): 1509-1525.?
[6]  魏爱荣, 赵克友. 执行器饱和不确定线性系统的分析和设计[J]. 电机与控制学报, 2005, 9(5): 448-451. WEI Airong,ZHAO keyou.Analysis and design for single input linear systems subject to input saturation and uncertainty[J].Electric Machines and Control,2005,9(5):448-451. ?
[7]  WU F, LU B. Anti?windup control design for exponentially unstable LTI systems with actuator saturation[J]. Syst Control Lett, 2004, 52(3-4): 305-322.?
[8]  TURNER M C, HERRMANN G, POSTLETHWAITE I. Accounting for uncertainty in anti?windup synthesis[C]// Proc 2004 American Control Conference. Boston, US, 2004.?
[9]  FERRERES G, BIANNIC J M. Convex design of a robust antiwindup controller for an LFT model[J]. IEEE Trans Automat Control, 2007, 52(11): 2173-2177.?
[10]  MEGRETSKI A, RANTZER A. System analysis via integral quadratic constraints[J]. IEEE Trans Automat Control, 1997, 42(6): 819-830.?
[11]  DAMATO F J, ROTEA M A, MEGRETSKI A V, JONSSON U T. New results for analysis of systems with repeated nonlinearities[J]. Automatica, 2001, 37(5): 739 -747.?
[12]  KULKARNI V V, SAFONOV M G. All multipliers for repeated monotone nonlinearities[J]. IEEE Trans Automat Control, 2002, 47(7): 1209-1212.?
[13]  RANTZER A. On the Kalman?Yakubovic?Popov lemma[J]. Syst Control Lett, 1996, 28(1-3): 7-10.?
[14]  GAHINET P. Explicit control formulas for LMI?based H synthesis[J]. Automatica, 1996, 32(7): 1007-1014.?[15]DOYLE J, LENZ K, PACKARD A. Design examples ?using? ?μ? ?synthesis: space shuttle lateral axis FCS during reentry[C]//Proc 6th Conference on Decision and Control. Athens, Greece, 1986.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133