GONG Y Y. Existence and multiplicity results for some quasilinear elliptic equation with critical Sobolev-Hardy exponent [J]. J Math (PRC), 2009, 29(4): 500-504.
SHANG Y Y, TANG C L. Existence of and multiplicity for some elliptic equations with critical Sobolev-Hardy exponent [J]. Journal of Lanzhou University: Natural Sciences, 2007, 43(4): 121-126.
[5]
胡爱莲, 张正杰. 含有Sobolev-Hardy临界指标的奇异椭圆方程Neumann问题无穷多解的存在性[J]. 数学物理学报, 2007, 27A(6): 1025-1034. \\ HU A L, ZHANG Z J. The existence of infinitely many solutions for an elliptic equation involving critical Sobolev-Hardy exponent with Neumann boundary condition [J]. Acta Math Scientia, 2007, 27A(6): 1025-1034.
[6]
CAO D, NOUSSAIR E S. The effect of gemometry of the domain boundary in an elliptic Neumann problem [J]. Adv Diff Eq, 2001, 6(8): 931-958.
[7]
HAN P G, LIU Z. Positive solutions for elliptic equations involving the critical Sobolev exponents and Hardy terms with Neumann boundary conditions [J]. Nonlinear Anal, 2003, 55: 167-186.
[8]
WANG X. Neumann problems of semilinear elliptic equations involving critical Sobolev exponents [J]. J Diff Eq, 1991, 93: 283-310.
[9]
GHOUSSOUB N, KANG X S. Hardy-Sobolev critical elliptic equations with boundary singularities [J]. Ann Inst H Poincare-AN, 2004, 21(6): 767-793.
SHANG Y Y, TANG C L. Existence of infinitely many solutions for some singular elliptic equation [J]. Journal of Northeast Normal University: Natural Science Edition, 2007, 39(4): 10-16.
[12]
WANG X. Neumann problems of semilinear elliptic equations involving critical Sobolev exponents [J]. J Diff Eq, 1991, 93: 283-310.
[13]
HAN P G. Neumann problems of a class of elliptic equations with doubly critical Sobolev exponents [J]. Acta Math Scientia, 2004, 24B(4): 633-638.
[14]
COMTE M, KNAAP M C. Existence of solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary conditions in generaldomains [J]. Diff Integral Eq, 1991, 4: 1133-1146.
[15]
BARTSCH T, WILLEM M. On an elliptic equation with concave and convex nonlinearility [J]. Proc Amer Math Soc, 1995, 123: 3555-3561.
[16]
WILLEM M. Minmax theorems [M]. Boston: Birkh\"{a}uhser, 1996.
[17]
GHOUSSOUB N, YUAN C. Multiple solutions for a quasilinear PDEs involving the critical Sobolev-Hardy exponents [J]. Trans Amer Math Soc, 2000, 352(12): 5703-5743.
WANG Z P, RUAN L Z. The existence of infinitely many solutions for a singular elliptic equation involving critical Sobolev-Hardy exponent [J]. Math Appl, 2004, 17(4): 639-648.