奇摄动,渐近解,脉冲微分方程, Open Access Library" />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类脉冲微分方程的渐近解

, PP. 60-65

Keywords: 奇摄动&searchField=keyword">奇摄动')"href="#">奇摄动,渐近解,脉冲微分方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类含有单个脉冲点的脉冲微分方程.基于奇摄动理论,通过分步法,将原脉冲微分方程问题扩充为奇摄动问题,证明了扩充问题的解是原问题解很好的近似,从而为进一步研究脉冲微分方程问题提供了新途径.其次,利用边界层函数法,构造了原问题连续的形式渐近解,证明了解的存在性和进行了余项估计.最后,通过例子验证了主要结果.

References

[1]  FU X L, YAN B Q, LIU Y S. Introduction to Impulsive Differential Systems[M]. Beijing: Science Press, 2005.
[2]  COOKE C H, KROLL J. The existence of periodic solutions to certain impulsive differential equations[J]. Computers Mathematics with Applications, 2002, 44: 667-676.
[3]  GIMENES L P, FEDERSON M. Existence and impulsive stability for second order retarded differential equations[J]. Applied Mathematics and Computation, 2006, 177: 44-62.
[4]  LAN H Y, CUI Y S. On the existence of solutions for nonlinear first-order implicit impulsive integro-differential equations[J]. Nonlinear Analysis: Theory, Methods and Applications, 2009,71: 1670-1677.
[5]  TIAN Y, JI D H, GE W G. Existence and nonexistence results of impulsive first-order problem with integral boundary condition[J]. Nonlinear Analysis: Theory, Methods and Applications, 2009, 71: 1250-1262.
[6]  NI M K, LIN W Z. Asymptotic Theory of Singularly Perturbed Problems[M]. Beijing: Higher Education Press, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133