Leibniz代数,不变对称双线性型,张量积,导子,边染色,最大度,第一类图, Open Access Library" />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

李代数的张量积所确定的Leibniz代数

, PP. 93-102

Keywords: Leibniz代数&searchField=keyword">Leibniz代数')"href="#">Leibniz代数,不变对称双线性型,张量积,导子,边染色,最大度,第一类图

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论了李代数\,$\mathcal{G}$\,以及由这个李代数诱导的\$\mathrm{Leibniz}$\,代数\,$\mathcal{G}\otimes\mathcal{G}$\,的一些性质,主要从不变双线性型和导子看这两个代数之间的差异,证明了在特定条件下两者的不变双线性型维数是一致的.为进一步确定李代数\,$\mathcal{G}$\,和\,$\mathcal{G}\otimes\mathcal{G}$\的差异,讨论了由\,$\mathcal{G}\otimes\mathcal{G}$\,诱导的一类重要的李代数\,$\mathcal{G}\boxtimes\mathcal{G}$;最后证明了,如果\,$\mathcal{G}$\,是有限维半单李代数,$\mathcal{G}$\,和\,$\mathcal{G}\boxtimes\mathcal{G}$\,是同构的.

References

[1]  BLOCH~A. On a generalization of Lie Algebra [J]. Math in USSR Doklady, 1965, 165(3): 471-473.
[2]  LODAY~J~L. Cyclic Homology [M]. Berlin: Springer-Verlag, 1992.
[3]  LODAY~J~L, Pirashvili~T. Universal enveloping algebras of Leibniz algebras and (co)homology [J]. Mathematische Annalen, 1993, 296(1): 139-158.
[4]  LODAY~J~L. K\"{u}nneth-style formula for the homology of Leibniz algebras [J]. Mathematics Zeitschrift, 1996, 221(1): 41-47.
[5]  PIRASHVILI~T. On Leibniz homology [J]. Annales De L''Institut Fourier, 1994, 44(2): 401-411.
[6]  AYUPOV~A~SH, OMIROV~B~A. On Leibniz algebra [C]. Algebra and Operator Theory Proceeding of the Colloquium in Tashkent, 1997: 1-12.
[7]  AYUPOV~A~SH, OMIROV~B~A. On some classes of nilpotent Leibniz algebra [J]. Siberian Mathematical, 2001, 42(1): 15-24.
[8]  ALBEVERIO~S, AYUPOV~A~SH, OMIROV~B~A. On nilpotent and simple Leibniz algebra [J]. Communications in Algebra, 2005, 33(1): 159-172.
[9]  KURDIANI~R, PIRASHVILI~T. A Leibniz Algebra Structure on the Second Tensor Power[J]. Journal of Lie Theory, 2002: 583-596.
[10]  LIU D, LIN L. On the toroidal Leibniz algebras[J]. Acta Mathematica Sinica, English Series, 2008, 24(2): 227-240.
[11]  LIU D, HU NH. Leibniz Algebras Graded by Finite Root Systems [J]. Algebra Colloquium, 2010, 17(3): 431-446.
[12]  蒋启芬. 三维\ $\mathrm{Leibniz}$\ 代数的分类 [J]. 数学研究与评论, 2007, 27(4): 677-686.\\
[13]  JIANG Q F. Classification of 3-Dimensional Leibniz Algebras [J]. Journal of Mathematical Research and Exposition, 2007, 27(4): 677-686.
[14]  DATTOLI~G, LEVI~D, WINTERNITZ~P. Heisenberg algebra umbral calculus and orthogonal polynomials [J]. Journal of Mathematical Physics, 2008, 49(5):9-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133