OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
有关连通图谱半径的一些可达下界
, PP. 18-26
Keywords: 邻接矩阵,谱半径,Perron特征向量,下界
Abstract:
讨论连通简单图的谱半径的下界问题.证明了关于途径数的一个不等式,进而利用最大、最小度、平均度、2-度和$k$-途径数给出图的谱半径一些新的下界.再运用相似矩阵特性与\,Weyl\,不等式,并利用途径数得到图谱半径的另一下界.同时刻画了上述下界的全部极值图.
References
[1] | YU A M, LU M, TIAN F. On the spectral radius of graphs[J]. Linear Algebra Appl, 2004, 387: 41-49.
|
[2] | NIKIFOROV V. Walks and the spectral radius of graphs[J]. Linear Algebra Appl, 2006, 418: 257-268.
|
[3] | HORN R A, JOHNSON C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985.
|
[4] | CVETKOVJ\''{C} D, DOOB M, SACHS H. Spectra of Graphs-Theory and Application[M]. New York: Academic Press, 1980.
|
[5] | HONG Y. Bounds of eigenvalues of graphs[J]. Discrete Math, 1993, 123: 65-74.
|
[6] | DAS K, KUMAR P. Some new bounds on the spectral radius of graphs[J]. Discrete Math, 2004, 281: 149-161.
|
[7] | HOFMEISTER M. Spectral radius and degree sequence[J]. Math Nachr, 1988, 139: 37-44.
|
[8] | HONG Y, ZHANG X D. Sharp upper and lower bounds for the Laplacian matrices of trees[J]. Discrete Math, 2005, 296: 187-197.
|
[9] | HU S B. A sharp lower bound of the spectral radius of simple graphs[J]. Anal Discrete Math, 2009, 3: 379-385.
|
[10] | SHI L S. Bounds on the (Laplacian) spectral radius of graphs[J]. Linear Algebra Appl, 2007, 422: 755-770.
|
[11] | YU A M. A new upper bound for the laplacian spectral radius of a graph[J]. Electronic Journal of Linear Algebra, 2010, 20: 730-738.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|