[1] | with extendible options using mean reversion with jumps to model oil
|
[2] | {1} BRENNAN M J, SCHWARTZ E S. Savings bonds,
|
[3] | retractable bonds, and callable bonds[J]. Journal of Financial
|
[4] | Economics, 1977(5): 67-88.
|
[5] | {2} ANANTHANARAYANAN A L, SCHWARTZ E S. Retractable
|
[6] | and extendible bonds: the Canadian experience[J]. Journal of
|
[7] | Finance, 1980, 35: 31-47.
|
[8] | {3} LONGSTAL F A. Pricing options with extendible
|
[9] | maturities: analysis and applications[J]. Journal of Finance, 1990,
|
[10] | : 935-957.
|
[11] | {4} MERTON R C. Option pricing when underlying
|
[12] | stock returns are discontinuous[J]. Journal of Financial Economics,
|
[13] | 76(3): 125-144.
|
[14] | {5} DIAS M A G, ROCHA K M C. Petroleum concessions
|
[15] | prices[R]. Working paper, IPEA, Brazil. 2000.
|
[16] | {6} GUKHAL C R. The compound option approach to
|
[17] | Amercian option on jump-diffusions[J]. Journal of Economics Dynamics
|
[18] | and Control, 2004, 28: 2055-2074.
|
[19] | {7} PETERS E. Fractal structure in the capital
|
[20] | markets[J]. Financial analyst Journal, 1989(7): 434-453.
|
[21] | {8} DUNCAN T E, HU Y, PASIK-DUNCAN B. Stochastic
|
[22] | calculus for fractinal Brownian motion 1: Theory[J]. SIAM J Control
|
[23] | Optim, 2000, 38: 582-612.
|
[24] | {9} NECULA C. Option pricing in a fractional Brownian
|
[25] | motion environment[R]. Academy of Economic Studies Bucharest,
|
[26] | Romania, Preprint, 2002.
|
[27] | {10} HU Y. Fractional white noise calculus and
|
[28] | applications to finance[C]// Infinite Dim Anal Quantum Probab
|
[29] | Related Topics, 2003, 6(1): 1-32.
|
[30] | {11} BAYRAKTAR E, POOR H V, SIRCAR K R.
|
[31] | Estimating the fractal dimension of the S{\&}P500 index using
|
[32] | wavelet analysis[J]. International Journal of Theoretical and
|
[33] | Applied Finance, 2004, 7(5): 615-643.
|
[34] | {12} MENG L, WANG M. Comparison of
|
[35] | Black--Scholes formula with fractional Black--Scholes formula in the
|
[36] | foreign exchange option market with changing volatility[J].
|
[37] | Financial Engineering and the Japanese Markets, 2010, 17(2): 99-111.
|
[38] | {13} XIAO W L, ZHANG W G, ZHANG X L, et al.
|
[39] | Pricing currency options in a fractional Brownian motion with
|
[40] | jumps[J]. Economic Modelling, 2010, (27)5: 935-942.
|
[41] | {14} LIU D Y, The option pricing of better-of options
|
[42] | driven by fractional Brownian motion and poisson jump process[J].
|
[43] | Mathematical theory and applications, 2010(1): 22-26.
|
[44] | {15} DAHLQUIST G, BJORCK A. Numerical Method[M].
|
[45] | Englewood Cliffs: Prentice-Hall, 1974: 268-269.
|