全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

跳分形过程下延展期权定价

, PP. 30-40

Keywords: 跳分形过程,延展期权,两点外推技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

当标的资产遵循跳分形过程时,构建了延展期权的评估框架.首先,在风险中性环境里,对标的资产发生跳跃次数的收益求条件期望现值,导出了延展一期的看涨期权解析定价公式,并探讨了公式的一些特殊情形.然后,将定价公式延展到\,$M$\,期,该延展期权价值在\,$M$\,趋于无穷极限状态时,将收敛于永久延展期权.提出了一种简单有效的两点外推法求极限.最后,提供数值结果,阐述了定价表达式的简单实用.

References

[1]  with extendible options using mean reversion with jumps to model oil
[2]  {1} BRENNAN M J, SCHWARTZ E S. Savings bonds,
[3]  retractable bonds, and callable bonds[J]. Journal of Financial
[4]  Economics, 1977(5): 67-88.
[5]  {2} ANANTHANARAYANAN A L, SCHWARTZ E S. Retractable
[6]  and extendible bonds: the Canadian experience[J]. Journal of
[7]  Finance, 1980, 35: 31-47.
[8]  {3} LONGSTAL F A. Pricing options with extendible
[9]  maturities: analysis and applications[J]. Journal of Finance, 1990,
[10]  : 935-957.
[11]  {4} MERTON R C. Option pricing when underlying
[12]  stock returns are discontinuous[J]. Journal of Financial Economics,
[13]  76(3): 125-144.
[14]  {5} DIAS M A G, ROCHA K M C. Petroleum concessions
[15]  prices[R]. Working paper, IPEA, Brazil. 2000.
[16]  {6} GUKHAL C R. The compound option approach to
[17]  Amercian option on jump-diffusions[J]. Journal of Economics Dynamics
[18]  and Control, 2004, 28: 2055-2074.
[19]  {7} PETERS E. Fractal structure in the capital
[20]  markets[J]. Financial analyst Journal, 1989(7): 434-453.
[21]  {8} DUNCAN T E, HU Y, PASIK-DUNCAN B. Stochastic
[22]  calculus for fractinal Brownian motion 1: Theory[J]. SIAM J Control
[23]  Optim, 2000, 38: 582-612.
[24]  {9} NECULA C. Option pricing in a fractional Brownian
[25]  motion environment[R]. Academy of Economic Studies Bucharest,
[26]  Romania, Preprint, 2002.
[27]  {10} HU Y. Fractional white noise calculus and
[28]  applications to finance[C]// Infinite Dim Anal Quantum Probab
[29]  Related Topics, 2003, 6(1): 1-32.
[30]  {11} BAYRAKTAR E, POOR H V, SIRCAR K R.
[31]  Estimating the fractal dimension of the S{\&}P500 index using
[32]  wavelet analysis[J]. International Journal of Theoretical and
[33]  Applied Finance, 2004, 7(5): 615-643.
[34]  {12} MENG L, WANG M. Comparison of
[35]  Black--Scholes formula with fractional Black--Scholes formula in the
[36]  foreign exchange option market with changing volatility[J].
[37]  Financial Engineering and the Japanese Markets, 2010, 17(2): 99-111.
[38]  {13} XIAO W L, ZHANG W G, ZHANG X L, et al.
[39]  Pricing currency options in a fractional Brownian motion with
[40]  jumps[J]. Economic Modelling, 2010, (27)5: 935-942.
[41]  {14} LIU D Y, The option pricing of better-of options
[42]  driven by fractional Brownian motion and poisson jump process[J].
[43]  Mathematical theory and applications, 2010(1): 22-26.
[44]  {15} DAHLQUIST G, BJORCK A. Numerical Method[M].
[45]  Englewood Cliffs: Prentice-Hall, 1974: 268-269.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133