全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于不确定波动率的非套利流动模型数值解法

Keywords: 非流动市场,不确定波动率,数值解,期权,差分格式

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过引入两种不确定波动率,将已有非流动市场下的期权定价模型推广到更一般的情形.由于模型比较复杂,难以求得解析解,通过构建相应的差分方程,讨论了模型的数值解法,并对算法的稳定性、相容性给予了证明.最后,数值实例比较分析了各个变量对期权价格的影响,结果表明,文算法放宽了对步长的要求,在较少的运算量下可以得到较满意的数值结果.

References

[1]  {1}
[2]  option pricing problems modeling illiquid markets[J]. Computers and Mathematics with Applications, 2010, 59(8): 2964-2975.
[3]  {3} LIU H, YONG J. Option pricing with an illiquid underlying
[4]  asset market[J]. Journal of Economic Dynamics and Control, 2005, 29:
[5]  25-2156.
[6]  {4} COMPANY R, J\''{O}DAR L, PINTOS J R. Numerical analysis and
[7]  computing for option pricing models in illiquid markets[J].
[8]  Mathematical and Computer Modelling, 2010, 52: 1066-1073.
[9]  {5}BAKSTEIN D, HOWISON S. An arbitrage-free liquidity model with
[10]  observable parameters for derivatives[R]. Working paper,
[11]  Mathematical Institute, Oxford University, 2004.
[12]  {6}HOWISON S. Matched asymptotic expansions in financial
[13]  engineering[J]. Journal of Engineering Mathematics Computers, 2005,
[14]  : 385-406.
[15]  {7}CASAB\''{A}N M C, COMPANY R, J\''{O}DAR L, et al. Numerical
[16]  analysis and computing of a non-arbitrage liquidity model with
[17]  observable parameters for derivatives[J]. Computers and Mathematics
[18]  with Applications. 2010, doi:10.1016/j. camwa. 2010.08.009.
[19]  {8}BARLES G, SONER H M. Option pricing with transaction costs and
[20]  a nonlinear Black-Scholes equation[J]. Finance Stoch, 1998, 2:
[21]  9-397.
[22]  {9} COMPANY R, NAVARRO R, PINTOS J R, et al. Numerical solution of
[23]  linear and nonlinear Black-Scholes option pricing equations[J].
[24]  Computers and Mathematics with Applications, 2008, 56: 813-821.
[25]  {10} COMPANY R, J\''{A}DAR L, PONSODAR E. Numerical solution of
[26]  Black-Scholes option pricing with variable yield discrete dividend
[27]  payment[J]. Banach Center Publ, 2008, 83: 37-47.
[28]  {11} COMPANY R, J\''{O}DAR L, PINTOS J R. A numerical method for
[29]  european option pricing with transaction costs nonlinear
[30]  equation[J]. Mathematical and Computer Modelling, 2009, 50: 910-920.
[31]  {12} COMPANY R, J\''{O}DAR L, PINTOS J R, et al. Computing option
[32]  pricing-methodology-based valuation of vanilla options and
[33]  explanation of the volatility smile[J]. J Appl Math, 2005(3):
[34]  5-258.
[35]  BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J].
[36]  Political Economy, 1973, 81: 637-659.
[37]  {2} BALLESTER C, COMPANY R, J\''{O}DAR L, et al. Numerical analysis and simulation of
[38]  pricing models under transaction costs[J]. Computers and Mathematics
[39]  with Applications, 2010, 59: 651-662.
[40]  {13} JANDA\v{C}KA M, \v{S}EV\v{C}OVI\v{C} D. On the risk-adjusted

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133