全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于类间可分性DAG-SVM的文本分类

, PP. 209-218

Keywords: 文本分类,支持向量机,DAG-SVM,类间可分性

Full-Text   Cite this paper   Add to My Lib

Abstract:

本方法采用了以类间分布和类间中心距离作为依据,对有向无环图结构进行调整,以解决传统的DAG-SVM多分类结构固定、单个节点位置随意引起的“误差累积”严重的缺陷.实验表明,该改进后的DAG-SVM文本分类方法,对文本分类准确率有一定的提高.

References

[1]  YANG Y M, PEDERSEN J O. A Comparative Study on Feature Selection in Text Categorization[C]. International Conference on Machine Learning. 1997.
[2]  POWERS D M W. Evaluation: from precision, recall and F-factor to ROC, informedness, markedness & correlation[J]. Journal of Machine Learning Technologies, 2004, 2: 37-63.
[3]  KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. 1995, 2(12): 1137-1143.
[4]  VAPNIK V N. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
[5]  朱树先,张仁杰.支持向量机核函数选择的研究[J].科学技术与工程,2008,8(16):4513-4517.
[6]  BOTTOU L, CORTES C, DENKER J, et al. Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition. Computer Vision & Image Processing [C]//Proceedings of the 12th IAPR International Conference. Jerusalem: [s.n.],1994: 77-87.
[7]  DEBNATH R, TAKAHIDE N, TAKAHASHI H. A decision based one-against-one method for multi-class support vector machine[J]. PATTERN ANALYSIS & APPLICATIONS, 2004,7: 164-175.
[8]  PLATT J C. Fast Training of Support Vector Machines Using Sequential Minimal Optimization [M]. [s.l.]: MIT Press, 1998.
[9]  张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
[10]  TAKAHASHI F, ABE S. Decision-Tree-Based Multi-Class Support Vector Machines[C]//Proceeding of ICONIP’02. Singapore: IEEE Press, 2002.
[11]  CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133