全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性~$p(x)$-Kirchhoff~方程在动态边界条件下的非全局存在性~

Keywords: p(x)$-Kirchhoff~方程组,非全局存在性,非线性源项和外力项

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑在动态边界条件下,非线性~$p$($x$)-Kirchhoff~方程组解的非全局存在性,该方程组带有非线性外力项~$Q$~和非线性源项$~f$.通过研究方程组解的自然能量,证明在初始能量小于一个临界值时,方程组解的非全局存在性.并将带有拟线性齐次~$p$-拉普拉斯算子的~$p$-Kirchhoff~方程组推广到~$p(x)$-Kirchhoff~方程组,该方程组近年被用来模拟很多现象.

References

[1]  {1}
[2]  CONRAD F, MORGUL \"{O}. On the stabilization of a flexible beam with
[3]  a tip mass[J]. SIAM J Control Optim. 1998, 36: 1962-1986.
[4]  {2}
[5]  CAVALCANTE M M, CAVALCANTE V N, SORIANO J A. Global existence and
[6]  uniformdecay rates for the Kirchhoff--Carrier equationwith nonlinear
[7]  dissipation[J]. Adv Differential Equations, 2001, 6: 701-730.
[8]  {3}
[9]  WU S T, TSAI L Y. Blow-up for solutions for some nonlinear wave
[10]  equations of Kirchhoff type with some dissipation[J]. Nonlinear Anal
[11]  TMA, 2006, 65: 243-264.
[12]  {4}
[13]  AUTUORI G, PUCCI P, SALAVATORI M C. Kirchhof systems with dynamic
[14]  boundary conditions[J], Nonlinear Anal TMA, 2010, 73: 1952-1965.
[15]  {5}
[16]  KOVACIK O, RAKOSNIK J. On spaces $L^{p(x)}$ and $W^{1,p(x)}$[J].
[17]  Czechoslovak Math J, 1991, 41: 592-618.
[18]  {6}
[19]  AUTUORI G, PUCCI P, SALAVATORI M C. Global nonexistence for
[20]  nonlinear Kirchhoff systems[J]. Arch Ration Mech Anal, 2010, 196:
[21]  9-516.
[22]  {7}
[23]  ZIEMER W P. Weakly Differentiable Functions[M]. Graduate Text in
[24]  Math 120. New York: Springer-Verlag, 1989.
[25]  {8}
[26]  PUCCI P, SERRIN J. Asymptotic stability for non-autonomous
[27]  dissipative wave systems[J]. Commun Pure Appl Math, 1996, 49:
[28]  7-216.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133