全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

较大亏格曲面嵌入图的线性荫度

Keywords: 线性荫度,曲面,嵌入图,欧拉示性数

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过度再分配的方法研究嵌入到曲面上图的线性荫度.给定较大亏格曲面\,$\Sigma$\,上嵌入图\,$G$,如果最大度\,$\Delta(G)\geq(\sqrt{45-45\varepsilon}+10)$\,且不含\,4-圈,则其线性荫度为\,$\lceil\frac{\Delta}{2}\rceil$,其中若\,$\Sigma$\,是亏格为\,$h(h>1)$\,的可定向曲面时$\varepsilon=2-2h$,若\,$\Sigma$\,是亏格为\,$k(k>2)$\,的不可定向曲面时$\varepsilon=2-k$.改进了吴建良的结果,作为应用证明了边数较少图的线形荫度.

References

[1]  degree seven are four[J] J Graph Theory,
[2]  {7}
[3]  WU J L. On the linear arboricity of planar graphs[J]. J Graph
[4]  Theory, 1999, 31: 129-134.
[5]  {8}
[6]  WU J L. Some path decompositions of Halin graphs[J]. J Shandong
[7]  Mining Institute, 1998, 17: 92-96. (in Chinese).
[8]  {9}
[9]  WU J L. The linear arboricity of series-parallel graphs[J]. Graph
[10]  and Combinatorics, 2000, 16: 367-372.
[11]  {10}
[12]  WU J L, LIU G Z, WU Y L. The linear arboricity of composition
[13]  graphs[J]. Journal of System Science and Complexity, 2002, 15(4):
[14]  2-375.
[15]  {11}
[16]  AKIYAMA J, EXOO G, HARARY F. Covering and packing in graphs IV:
[17]  Linear arboricity[J]. Networks, 1981, 11: 69-72.
[18]  {1}
[19]  WU J L. The linear arboricity of graphs on surfaces of negative
[20]  Euler characteristic[J]. SIAM J Discrete Math 2008, 23: 54-58.
[21]  {2}
[22]  BONDY J A, MURTY U S R. Graph Theory with Applications[M].
[23]  New York: Macmilan Ltd Press, 1976.
[24]  {3}
[25]  MOHAR B, THOMASSEN C. Graphs on Surfaces[M]. Baltimore: Johns
[26]  Hopkins University Press, 2001: 85-85
[27]  {4}
[28]  AKIYAMA J, EXOO G, HARARY F. Covering and packing in graphs III:
[29]  Cyclic and acyclic invariants[J]. Math Slovaca, 1980, 30: 405-417.
[30]  {5}
[31]  A\"{I}-DJAFER H. Linear arboricity for graphs with multiple
[32]  edges[J]. J Graph Theory 1987, 11: 135-140.
[33]  {6}
[34]  WU J L, WU Y W. The linear arboricity of planar graphs of maximum

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133