全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

方差相关原理下相依聚合风险模型的贝叶斯保费

, PP. 26-38

Keywords: 风险相依,方差相关保费原理,聚合保费,贝叶斯保费

Full-Text   Cite this paper   Add to My Lib

Abstract:

在经典的聚合风险模型中,常常假设索赔次数和索赔额是相互独立的,然而在实际保险业务中,索赔额和索赔次数常常呈现相依情形.本文通过引入Sarmanov-Lee相依分布族的概念,在索赔次数和索赔额呈现某种特定相依结构的条件下,研究了聚合风险模型下方差相关保费原理的聚合保费和贝叶斯保费,并通过数值模拟,对保费估计的稳健性进行了分析.结果表明,即使参数间的相依程度很小,也会对聚合风险保费和贝叶斯保费带来较大的影响.

References

[1]  YANG J, ZHOU S, ZHANG Z. The compound Poisson random variable''s approximation to the individual risk model [J]. Insurance: Mathematics and Economics, 2005, 36: 57-77.
[2]  B\"{U}HLMANN H, GISLER A. A Course in Credibility Theory and its Applications [M]. Netherlands: Springer, 2005.
[3]  } B\"{U}HLMANN H, STRAUB E. Glaubw\"{u}digkeit f\"{u}r Schadens\"{a}ze [J]. Bulletin of the Swiss Association of
[4]  Actuaries, 1970, 70(1): 111-133.
[5]  FISHBURN P C. Decision theroy and discrete mathematics [J]. Discrete Applied Mathematics, 1996, 68: 209-221.
[6]  PAI S. Bayesian analysis of compound loss distributions [J]. Econometrics, 1997, 79(1): 129-146.
[7]  DHAENE J, DENUIT M, GOOVAERTS M J, et al. The concept of comonotonicity in actuarial science and finance: theory [J]. Insurance: Mathematics and Economics, 2002a, 31: 3-33.
[8]  DHAENE J, DENUIT M, GOOVAERTS M J, et al. The concept of comonotonicity in actuarial science and finance: application [J]. Insurance: Mathematics and Economics, 2002b, 31: 133-161.
[9]  LU T Y, ZHANG Y. Generalized correlation order and stop-loss order [J]. Insurance: Mathematics and Economics, 2004, 35: 69-76.
[10]  M\"{U}LLER A. Stop-loss order for portfolios of dependent risks [J]. Insurance: Mathematics and Economics, 1997, 21: 219-223.
[11]  WANG S S, YOUNG V R, PANJER H H. Axiomatic characterization of insurance prices [J]. Insurance: Mathematics and Economics, 1997, 21: 173-189.
[12]  SARMANOR O V. Generalized normal correlation and two-dimensional Frechet classes [J]. Dokady(Soviet Mathematics), 1966, 168: 596-599.
[13]  HERN\''{A}NDEZ-BASTIA A, FERN\''{A}NDEZ-S\''{A}NCHEZ J M, G\''{O}MEZ-D\''{E}NIZ E. The net Bayes premium with dependenve between the risk profiles [J]. Insurance: Mathematics and Economics, 2009, 45: 247-254.
[14]  ASMUSSEN S. Ruin Probabilities [M]. Singapore: World Scientific Publishing, 2000.
[15]  GERBER H U. An Introduction to Mathematical Risk Theory [M]. Philadelphia: S S Heubner Foundation Monograph Series 8, 1979.
[16]  YOUNG V R. Premium Principle [M]//Encyclopedia of Actuarial Science. [S.l.]: Wiley, 2004, 26: 1322-1331.
[17]  GUERRA M, CENTENO M L. Optimal reinsurance for variance related premium calculation principles [J]. Astin Bulletin, 2010, 41(1): 97-121.
[18]  CHI Y C. Optimal reinsurance under variance related premium principles [J]. Insurance: Mathematics and Economics, 2011, 51(2): 310-321.
[19]  JOHNSON N L, KEMP A K. A Mixed Bivariate Distribution With Exponential and Geometric Marginals [M]. 3rd ed. New York: John Wiley, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133