YANG J, ZHOU S, ZHANG Z. The compound Poisson random variable''s approximation to the individual risk model [J]. Insurance: Mathematics and Economics, 2005, 36: 57-77.
[2]
B\"{U}HLMANN H, GISLER A. A Course in Credibility Theory and its Applications [M]. Netherlands: Springer, 2005.
[3]
} B\"{U}HLMANN H, STRAUB E. Glaubw\"{u}digkeit f\"{u}r Schadens\"{a}ze [J]. Bulletin of the Swiss Association of
[4]
Actuaries, 1970, 70(1): 111-133.
[5]
FISHBURN P C. Decision theroy and discrete mathematics [J]. Discrete Applied Mathematics, 1996, 68: 209-221.
[6]
PAI S. Bayesian analysis of compound loss distributions [J]. Econometrics, 1997, 79(1): 129-146.
[7]
DHAENE J, DENUIT M, GOOVAERTS M J, et al. The concept of comonotonicity in actuarial science and finance: theory [J]. Insurance: Mathematics and Economics, 2002a, 31: 3-33.
[8]
DHAENE J, DENUIT M, GOOVAERTS M J, et al. The concept of comonotonicity in actuarial science and finance: application [J]. Insurance: Mathematics and Economics, 2002b, 31: 133-161.
[9]
LU T Y, ZHANG Y. Generalized correlation order and stop-loss order [J]. Insurance: Mathematics and Economics, 2004, 35: 69-76.
[10]
M\"{U}LLER A. Stop-loss order for portfolios of dependent risks [J]. Insurance: Mathematics and Economics, 1997, 21: 219-223.
[11]
WANG S S, YOUNG V R, PANJER H H. Axiomatic characterization of insurance prices [J]. Insurance: Mathematics and Economics, 1997, 21: 173-189.
[12]
SARMANOR O V. Generalized normal correlation and two-dimensional Frechet classes [J]. Dokady(Soviet Mathematics), 1966, 168: 596-599.
[13]
HERN\''{A}NDEZ-BASTIA A, FERN\''{A}NDEZ-S\''{A}NCHEZ J M, G\''{O}MEZ-D\''{E}NIZ E. The net Bayes premium with dependenve between the risk profiles [J]. Insurance: Mathematics and Economics, 2009, 45: 247-254.
[14]
ASMUSSEN S. Ruin Probabilities [M]. Singapore: World Scientific Publishing, 2000.
[15]
GERBER H U. An Introduction to Mathematical Risk Theory [M]. Philadelphia: S S Heubner Foundation Monograph Series 8, 1979.
[16]
YOUNG V R. Premium Principle [M]//Encyclopedia of Actuarial Science. [S.l.]: Wiley, 2004, 26: 1322-1331.
[17]
GUERRA M, CENTENO M L. Optimal reinsurance for variance related premium calculation principles [J]. Astin Bulletin, 2010, 41(1): 97-121.
[18]
CHI Y C. Optimal reinsurance under variance related premium principles [J]. Insurance: Mathematics and Economics, 2011, 51(2): 310-321.
[19]
JOHNSON N L, KEMP A K. A Mixed Bivariate Distribution With Exponential and Geometric Marginals [M]. 3rd ed. New York: John Wiley, 2005.