PIGOLA S, RIGOLI M, SETTI A G. Ricci almost solitons[J]. Annali della Scuola Normale Superiore di Pisa, 2011(4): 757-799.
[2]
WANG L F. Diameter estimate for compact quasi-Einstein metrics[J]. Mathematische Zeitschrift, 2013, 273: 801-809.
[3]
CASE J, SHU Y J, WEI G. Rigidity of quasi-Einstein metrics[J]. Differential Geometry and its Applications, 2011, 29: 93-100.
[4]
WANG L F. Rigid properties of quasi-Einstein metrics[J]. Proceedings of the American Mathematical Society, 2011, 139: 3679-3689.
[5]
WANG L F. On noncompact tau-quasi-Einstein metrics[J]. Pacific Journal of Mathematics, 2011, 254: 449-464.
[6]
WANG L F. On Lfp-spectrum and tau-quasi-Einstein metric[J]. Journal of Mathematical Analysis and Applications, 2012, 389: 195-204.
[7]
CAO H D. Existence of gradient K"ahler-Ricci solitons, Elliptic and Parabolic Methods in Geometry[M]. Minneapolis: A K Peters, Wellesley, 1996.
[8]
EMINENTI M, NAVE G L, MANTEGAZZA C. Ricci solitons: the equation point of view[J]. Manuscripta math, 2008, 127: 345-367.
[9]
CAO H D. Geometry of Ricci solitons[J]. Chinese Annals of Mathematics Series B, 2006(27): 121-142.
[10]
CAO H D, ZHOU D. On complete gradient shrinking Ricci solitons[J]. Journal of Differential Geometry, 2010, 85: 175-186.
[11]
WEI G, WYLIE W. Comparison geometry for the Bakry''Emery Ricci tensor[J]. Journal of Differential Geometry, 2009, 83: 377-405.
[12]
FUTAKI A, SANO Y. Lower diameter bounds for compact shrinking Ricci solitons[J]. Asian Journal of Mathematics, 2013, 17(1): 17-31.
[13]
WANG L F. Rigid properties of quasi-almost-Einstein Metrics[J]. Chinese Annals of Mathematics Series B, 2012, (33): 715-736.
[14]
WANG L F. A splitting theorem for the weighted measure[J]. Annals of Global Analysis and Geometry, 2012, 42: 79-89.
[15]
GILBARG D, TRUDINGER N. Elliptic Partial Differential Equations of Second Order[M]. Berlin: Springer-Verlag, 1977.
[16]
QIAN Z M. Estimates for weight volumes and applications[J]. Quarterly Journal of Mathematics: Oxford Journals, 1997, 48: 235-242.
[17]
LOTT J. Some geometric properties of the Bakry-Emery Ricci tensor[J]. Commentarii Mathematici Helvetici, 2003, 78: 865-883.
[18]
LI X D. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds[J]. Journal de Mathematiques Pures et Appliqu\''{e}s, 2005, 84: 1295-1361.
[19]
WANG L F. The upper bound of the L2μ spectrum[J]. Annals of Global Analysis and Geometry, 2010, 37: 393-402.