全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类特殊的拟几乎Einstein度量直径的下界估计

, PP. 27-35

Keywords: 拟几乎~Einstein~度量,梯度估计,直径估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

加权~Myer~型定理给出了具有带正下界的~$\tau$-Bakry-\'{E}mery~曲率的完备黎曼流形直径的上界估计,紧致流形直径的下界估计也是有趣的问题.本文首先运用~Hopf~极大值原理证明了一类特殊的~$\tau$-拟几乎~Einstein~度量势函数的梯度估计.运用该梯度估计得到了该度量直径的下界估计.该结果推广了王林峰的关于紧致~$\tau$-拟~Einstein~度量直径下界估计的结果.

References

[1]  PIGOLA S, RIGOLI M, SETTI A G. Ricci almost solitons[J]. Annali della Scuola Normale Superiore di Pisa, 2011(4): 757-799.
[2]  WANG L F. Diameter estimate for compact quasi-Einstein metrics[J]. Mathematische Zeitschrift, 2013, 273: 801-809.
[3]  CASE J, SHU Y J, WEI G. Rigidity of quasi-Einstein metrics[J]. Differential Geometry and its Applications, 2011, 29: 93-100.
[4]  WANG L F. Rigid properties of quasi-Einstein metrics[J]. Proceedings of the American Mathematical Society, 2011, 139: 3679-3689.
[5]  WANG L F. On noncompact tau-quasi-Einstein metrics[J]. Pacific Journal of Mathematics, 2011, 254: 449-464.
[6]  WANG L F. On Lfp-spectrum and tau-quasi-Einstein metric[J]. Journal of Mathematical Analysis and Applications, 2012, 389: 195-204.
[7]  CAO H D. Existence of gradient K"ahler-Ricci solitons, Elliptic and Parabolic Methods in Geometry[M]. Minneapolis: A K Peters, Wellesley, 1996.
[8]  EMINENTI M, NAVE G L, MANTEGAZZA C. Ricci solitons: the equation point of view[J]. Manuscripta math, 2008, 127: 345-367.
[9]  CAO H D. Geometry of Ricci solitons[J]. Chinese Annals of Mathematics Series B, 2006(27): 121-142.
[10]  CAO H D, ZHOU D. On complete gradient shrinking Ricci solitons[J]. Journal of Differential Geometry, 2010, 85: 175-186.
[11]  WEI G, WYLIE W. Comparison geometry for the Bakry''Emery Ricci tensor[J]. Journal of Differential Geometry, 2009, 83: 377-405.
[12]  FUTAKI A, SANO Y. Lower diameter bounds for compact shrinking Ricci solitons[J]. Asian Journal of Mathematics, 2013, 17(1): 17-31.
[13]  WANG L F. Rigid properties of quasi-almost-Einstein Metrics[J]. Chinese Annals of Mathematics Series B, 2012, (33): 715-736.
[14]  WANG L F. A splitting theorem for the weighted measure[J]. Annals of Global Analysis and Geometry, 2012, 42: 79-89.
[15]  GILBARG D, TRUDINGER N. Elliptic Partial Differential Equations of Second Order[M]. Berlin: Springer-Verlag, 1977.
[16]  QIAN Z M. Estimates for weight volumes and applications[J]. Quarterly Journal of Mathematics: Oxford Journals, 1997, 48: 235-242.
[17]  LOTT J. Some geometric properties of the Bakry-Emery Ricci tensor[J]. Commentarii Mathematici Helvetici, 2003, 78: 865-883.
[18]  LI X D. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds[J]. Journal de Mathematiques Pures et Appliqu\''{e}s, 2005, 84: 1295-1361.
[19]  WANG L F. The upper bound of the L2μ spectrum[J]. Annals of Global Analysis and Geometry, 2010, 37: 393-402.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133