SCHWEITZER M. Autour de la cohomologie de Bott-Chern [J/OL]. arXiv:0709 3528v1, 2007[2014-03-06].http://arxiv.org/abs/0709.3528.
[2]
LIN J Z, YE X M. The jumping phenomenon of the dimensions of Bott-Chern cohomology groups and Aeppli cohomology groups [J/OL]. arXiv: 1403 0285v2, 2014[2014-03-06].http://arxiv.org/abs/1403.0285.
[3]
KODAIRA K. Complex manifolds and deformation of complex structures [M]. New York: Springer, 1986.
[4]
VOISIN C. Hodge theory and complex algebraic geometry I [M]. London: Cambridge University Press, 2002.
[5]
ANGELLA D. The cohomologies of the Iwasawa manifold and of its small deformations [J]. J Geom Anal, 2013, 23(3): 1355-1378.
[6]
YE X M. The jumping phenomenon of Hodge numbers [J]. Pacific Journal of Mathematics, 2008, 235(2): 379-398.
[7]
YE X M. The jumping phenomenon of the dimensions of cohomology groups of tangent sheaf [J]. Acta Mathematica Scientia, 2010, 30(5):
[8]
46-1758.
[9]
VOISIN C. Symétrie miroir [M]. Paris: Société Mathématique de France, 1996.
[10]
FR?LICHER A. Relations between the cohomology groups of Dolbeault and topological invariants [J], Proc Nat Acad Sci USA, 1955: 641-644.
[11]
BOTT R, CHERN S -S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections [J], Acta Math, 1965: 71-112.
[12]
AEPPLI A. On the cohomology structure of Stein manifolds [J], Proc Conf Complex Analysis (Minneapolis, Minn., 1964), 1965: 58-70.