Gitelson A A, Schalles J F, Hladik C M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study[J]. Remote Sensing of Environment, 2007, 109(4): 464-472.
[4]
Carder K L, Chen F R, Cannizzaro J P, et al. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a[J]. Adv Space Res, 2004, 33(7): 1152-1159.
[5]
Garver S A, Siegel D. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea[J]. Journal of Geophysical Research: Oceans. 1997, 102(C8): 18607-18625.
[6]
Buekton D, O\'Mongain E, Danahe E. The use of neural networks for the estimation of oceanic constituents based on the MERIS instrument[J]. International Journal of Remote Sensing, 1999, 20(9): 1841-1851.
[7]
Sun D, Li Y M, Wang Q. A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral data[J]. IEEE Transactions of Geoscience and Remote Sensing, 2009, 47(8): 2957-2965.
[8]
Koza J R. Genetic Programming II: Automatic Discovery of Reusable Programs[M]. Cambridge: The MIT Press, 1994: 1-39.
Sathyend Ranath S. Remote Sensing of ocean color in coastal and other optically-complex waters[R]. Dartmouth, Canada: IOCCG, 2000.
[13]
Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12): 2369-2378.
[14]
Lee Z P, Carder K L, Arone R A. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters[J]. Applied Optics, 2002, 41(27): 5755-5772.
[15]
Chami M, Robilliard D. Inversion of oceanic constituents in case I and II waters with genetic programming algorithms[J]. Applied Optics, 2002, 41(30): 6260-6275.